

SAN VITO T01 (in relazione DIASIS 2012: Stazione HVSR - T1)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T01

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

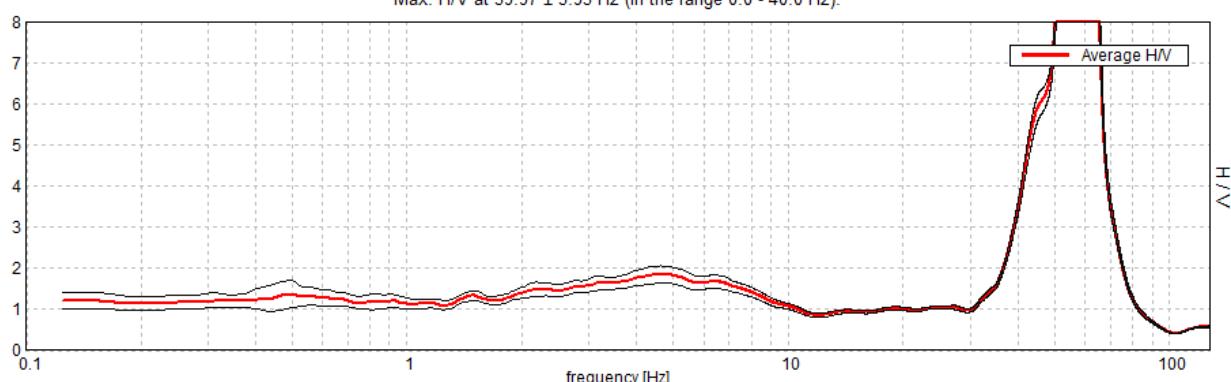
Start recording: 01/08/12 11:46:31 End recording: 01/08/12 12:32:31

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

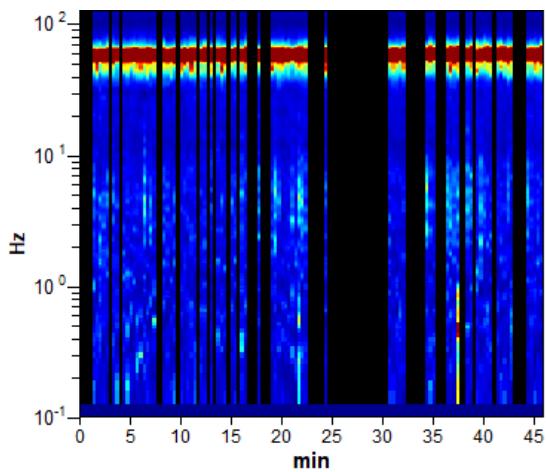
GPS data not available

Trace length: 0h46'00". Analyzed 57% trace (manual window selection)

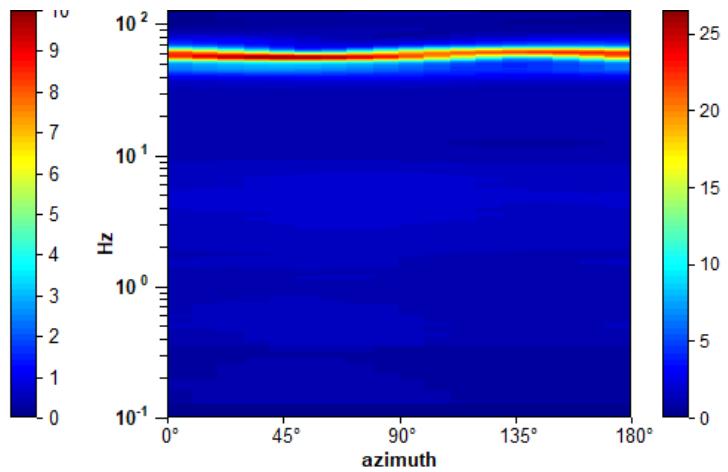
Sampling rate: 256 Hz

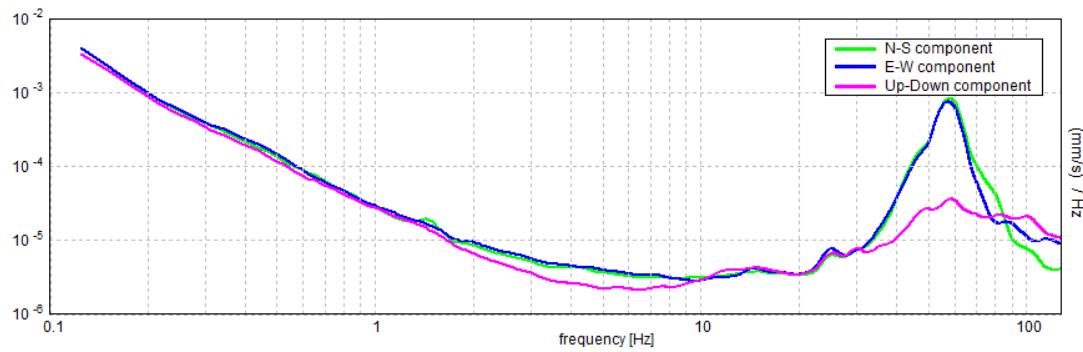

Window size: 20 s

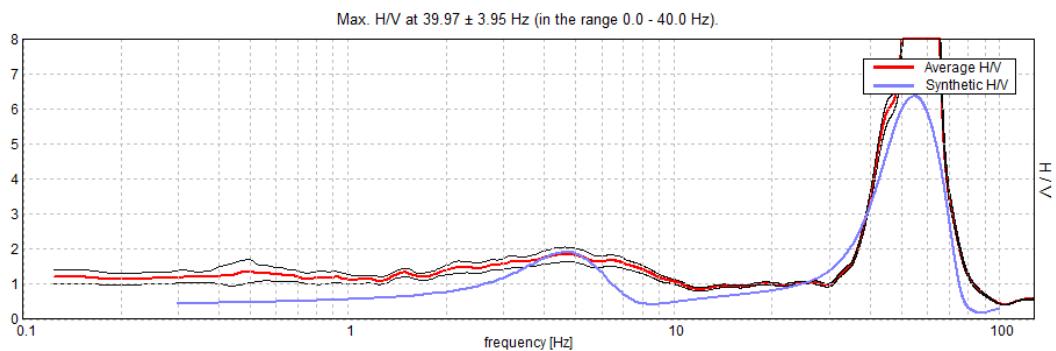
Smoothing type: Triangular window


Smoothing: 10%

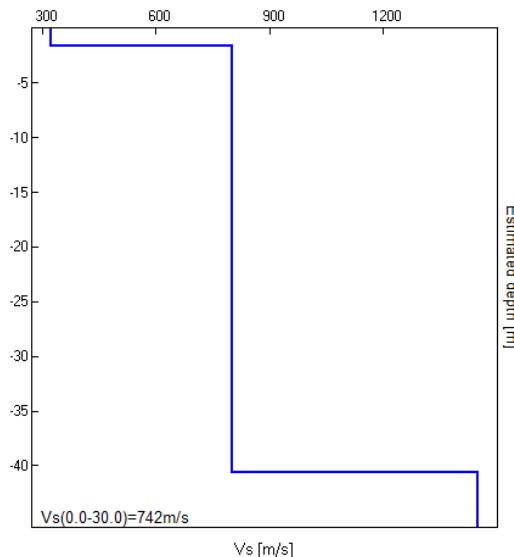
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 39.97 ± 3.95 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	V_s [m/s]	Poisson ratio
1.59	1.59	322	0.42
40.59	39.00	800	0.42
inf.	inf.	1450	0.42

$V_s(0.0-30.0)=742\text{m/s}$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 18.5 ± 7.93 Hz (in the range 0.0 - 20.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$18.50 > 1.00$	OK	
$n_c(f_0) > 200$	$12950.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz	Exceeded 0 out of 445 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz			

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	73.063 Hz	OK	
$A_0 > 2$	$4.94 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.42871 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$7.93117 < 0.925$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.5901 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T02 (in relazione DIASIS 2012: Stazione HVSR - T2)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

SAN VITO T02

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

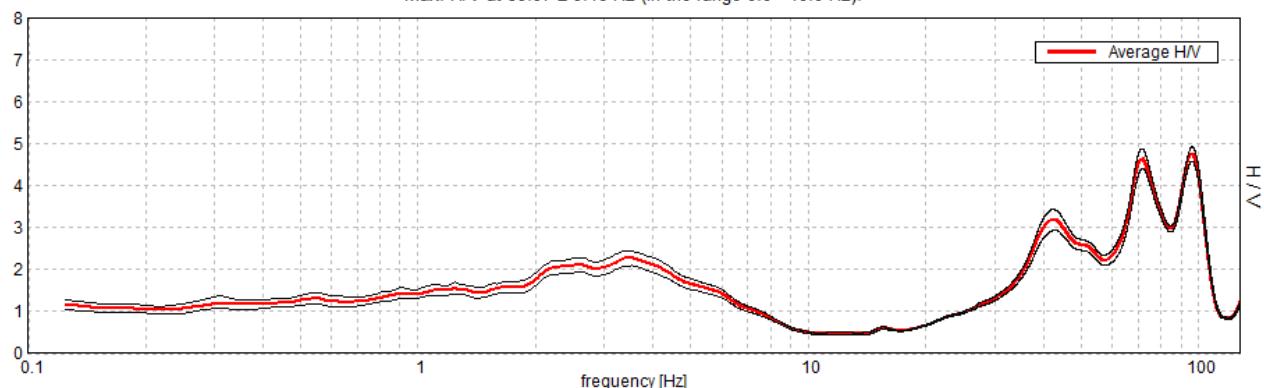
Start recording: 01/08/12 12:38:40 End recording: 01/08/12 13:24:39

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

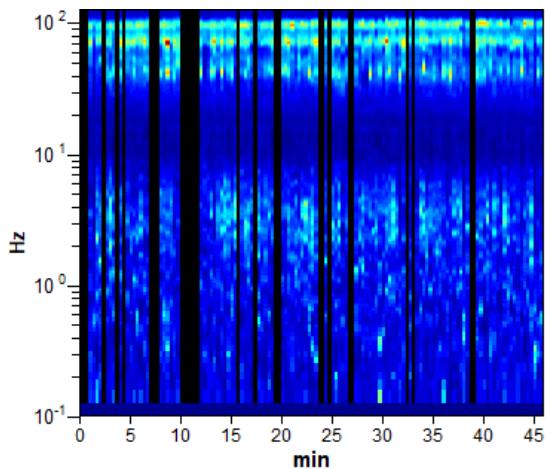
GPS data not available

Trace length: 0h46'00". Analyzed 80% trace (manual window selection)

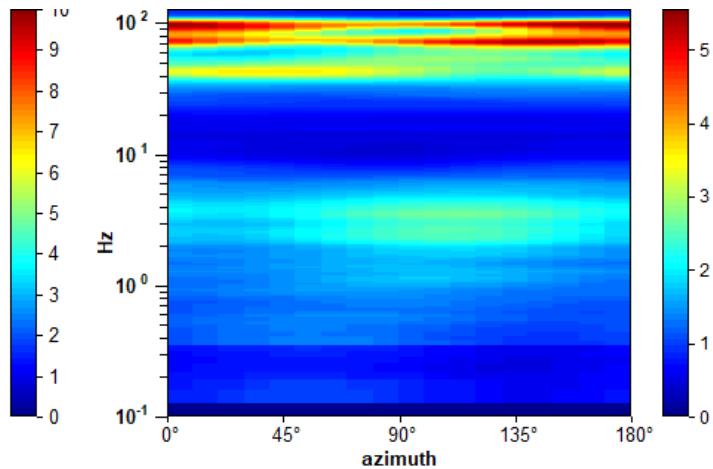
Sampling rate: 256 Hz

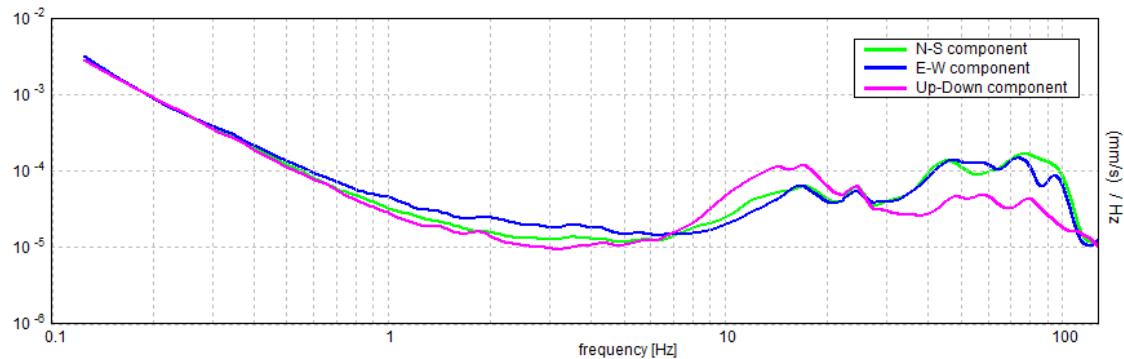

Window size: 20 s

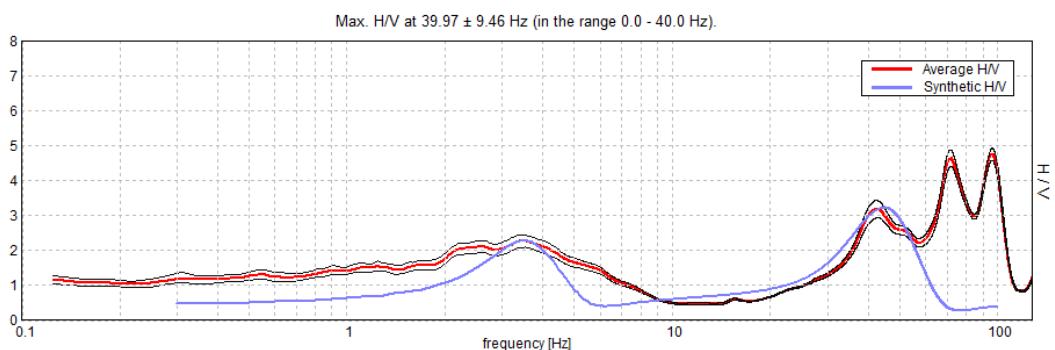
Smoothing type: Triangular window


Smoothing: 10%

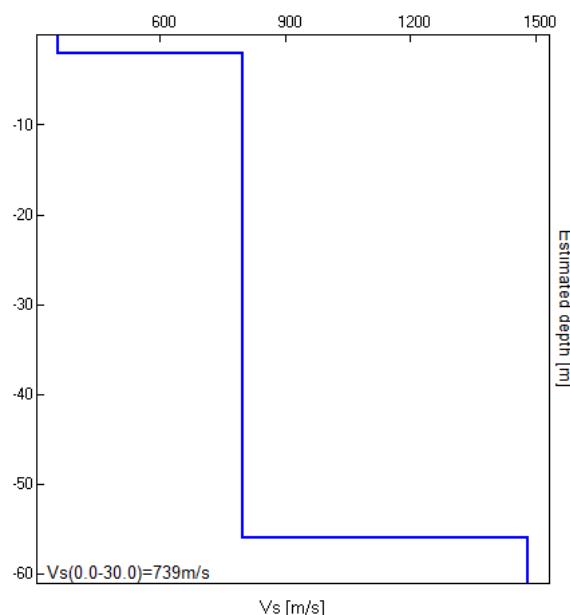
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 39.97 ± 9.46 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.00	2.00	358	0.41
56.00	54.00	800	0.41
inf.	inf.	1480	0.41

$$Vs(0.0-30.0)=739 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 39.97 ± 9.46 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$39.97 > 0.50$	OK	
$n_c(f_0) > 200$	$87931.3 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 1920 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	32.094 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	108.875 Hz	OK	
$A_0 > 2$	$2.98 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.23659 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$9.45633 < 1.99844$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.2347 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T03 (in relazione DIASIS 2012: Stazione HVSR – T3)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

SAN VITO, P03

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

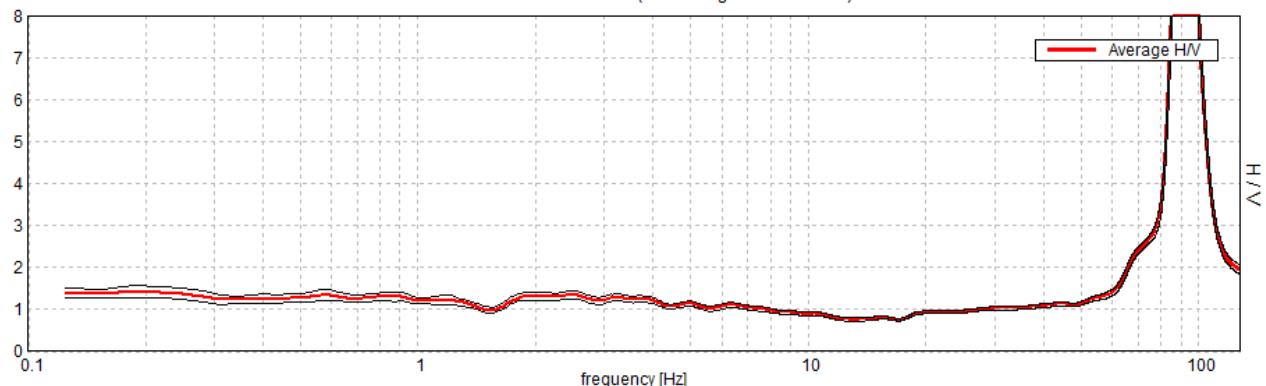
Start recording: 01/08/12 13:36:39 End recording: 01/08/12 14:22:39

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

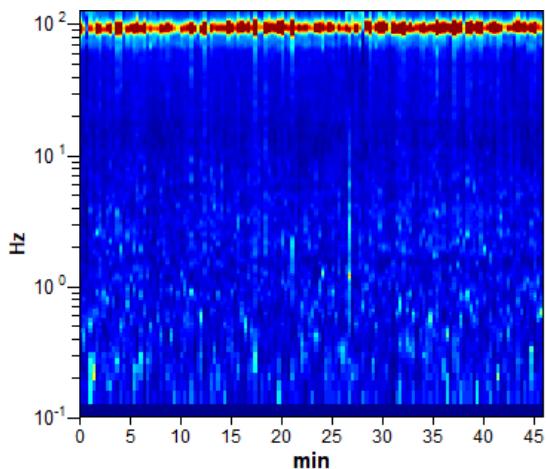
GPS data not available

Trace length: 0h46'00". Analysis performed on the entire trace.

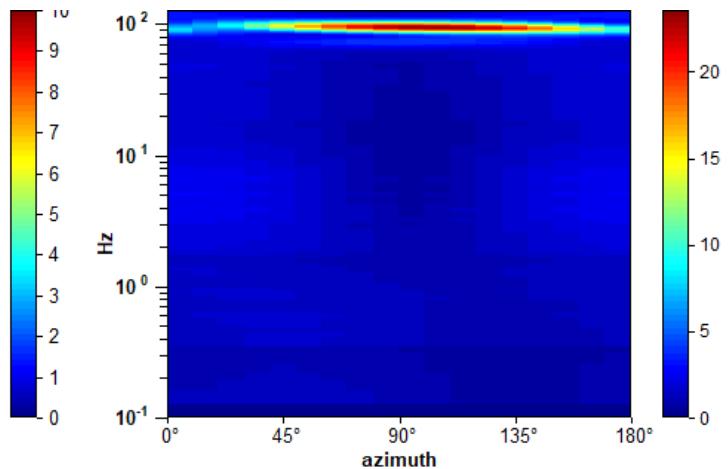
Sampling rate: 256 Hz

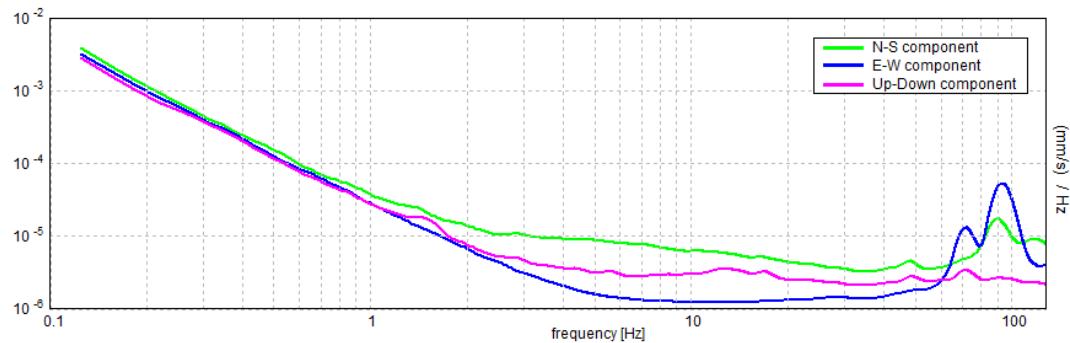

Window size: 20 s

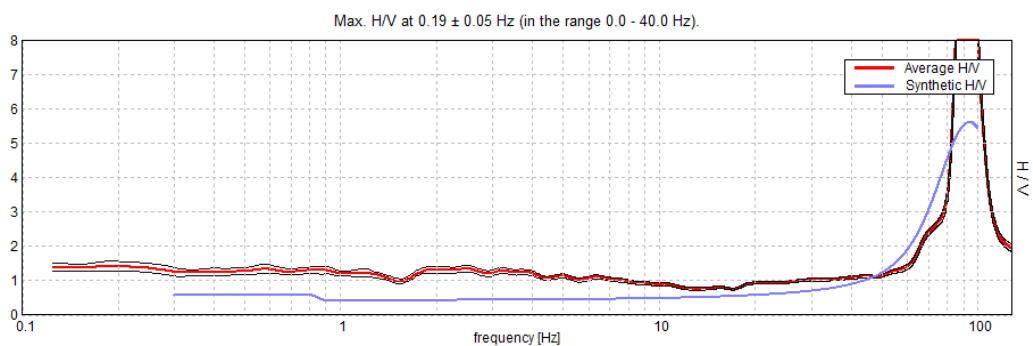
Smoothing type: Triangular window


Smoothing: 10%

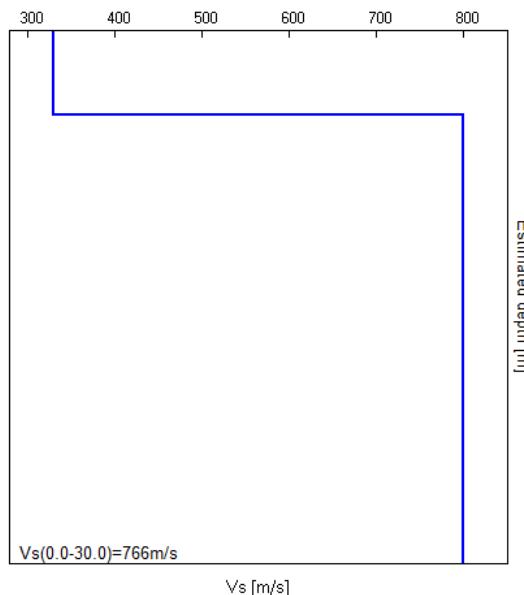
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 0.19 ± 0.05 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.93	0.93	330	0.42
inf.	inf.	800	0.42

$$Vs(0.0-30.0)=766 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 0.19 ± 0.05 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$0.19 > 0.50$		NO
$n_c(f_0) > 200$	$517.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 10 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	0.094 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$1.43 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.27031 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.05068 < 0.04688$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1401 < 3.0$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T04 (in relazione DIASIS 2012: Stazione HVSR – T4)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T04

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

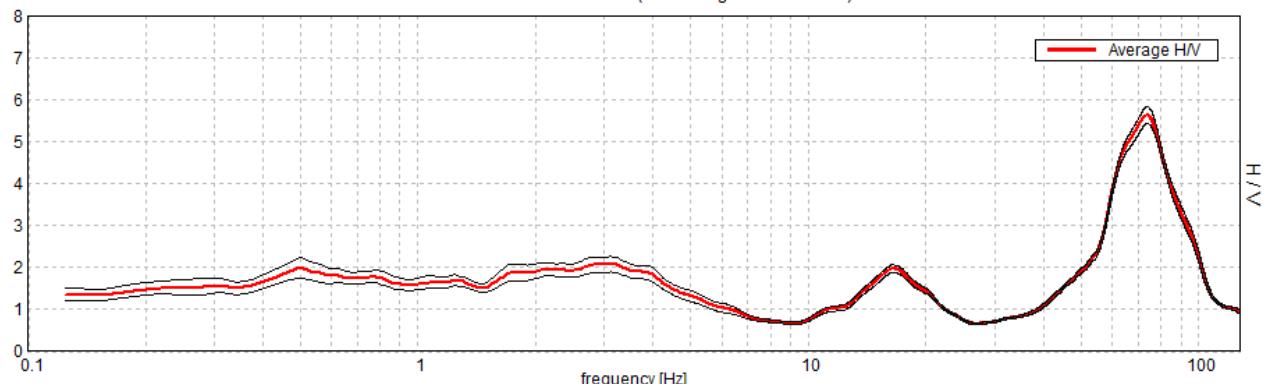
Start recording: 01/08/12 14:11:16 End recording: 01/08/12 14:57:16

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

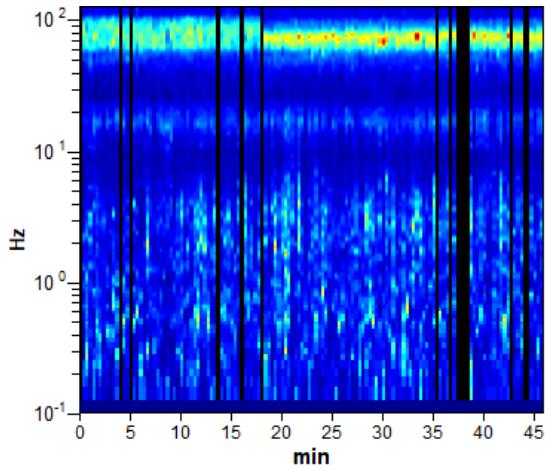
GPS data not available

Trace length: 0h46'00". Analyzed 89% trace (manual window selection)

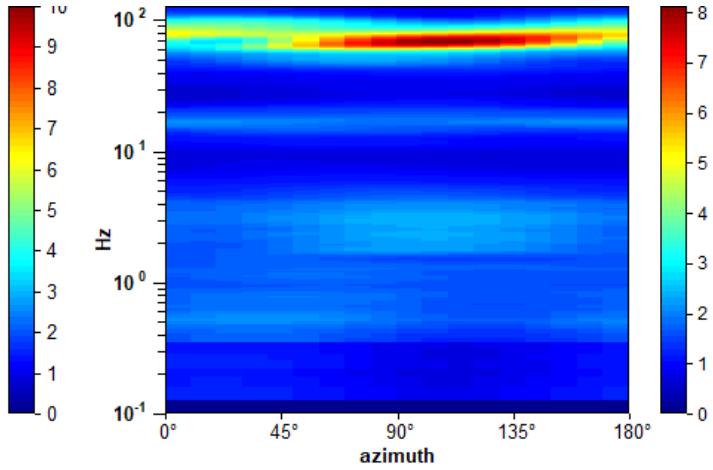
Sampling rate: 256 Hz

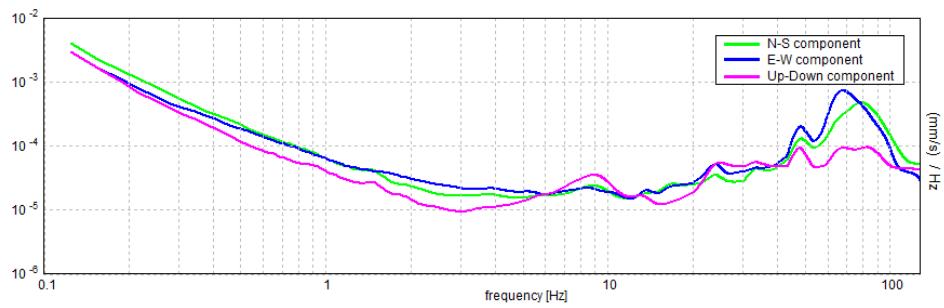

Window size: 20 s

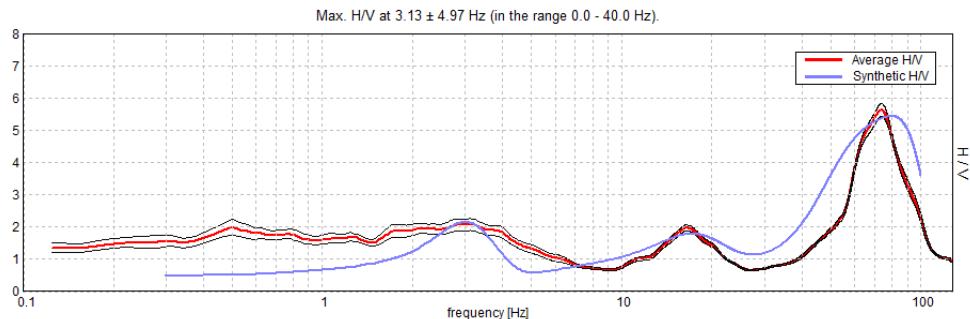
Smoothing type: Triangular window


Smoothing: 10%

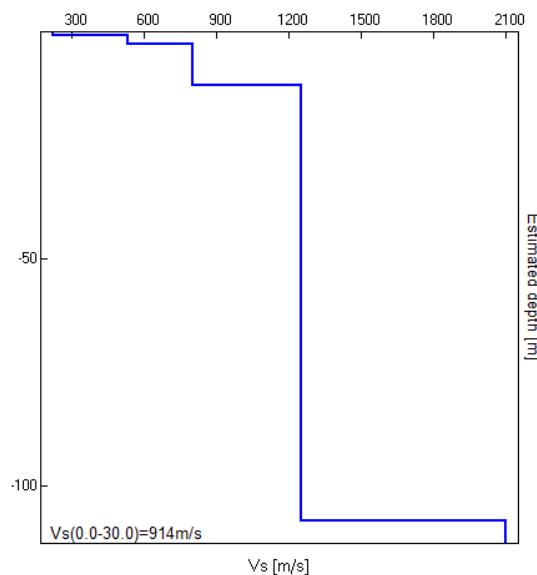
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 3.13 ± 4.97 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.70	0.70	221	0.45
2.70	2.00	530	0.35
11.70	9.00	800	0.35
107.70	96.00	1250	0.35
inf.	inf.	2100	0.45

$$Vs(0.0-30.0) = 914 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 3.13 ± 4.97 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$3.13 > 0.50$	OK	
$n_c(f_0) > 200$	$7687.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 151 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f in $[f_0/4, f_0]$ $A_{H/V}(f) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	6.031 Hz	OK	
$A_0 > 2$	$2.08 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 1.59165 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$4.9739 < 0.15625$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1875 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T05 (in relazione DIASIS 2012: Stazione HVSR – T5)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T05

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

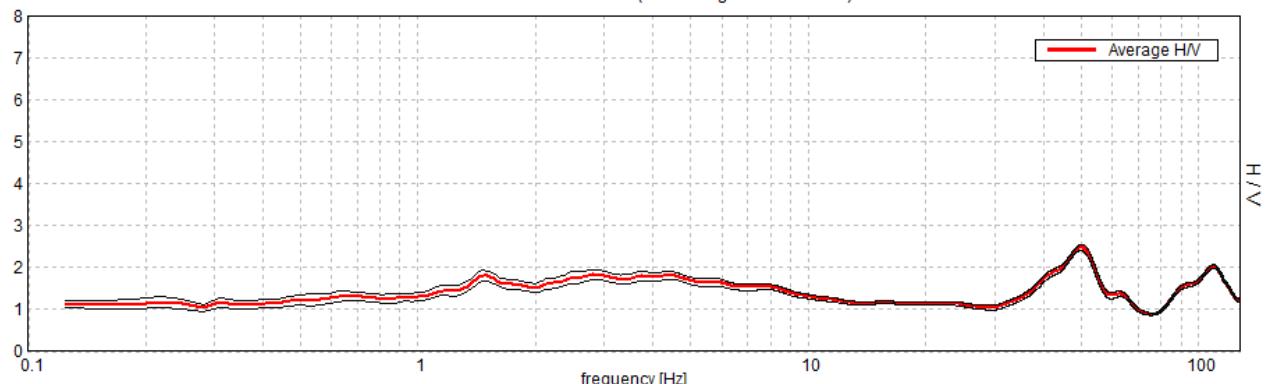
Start recording: 02/08/12 11:39:17 End recording: 02/08/12 12:25:18

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

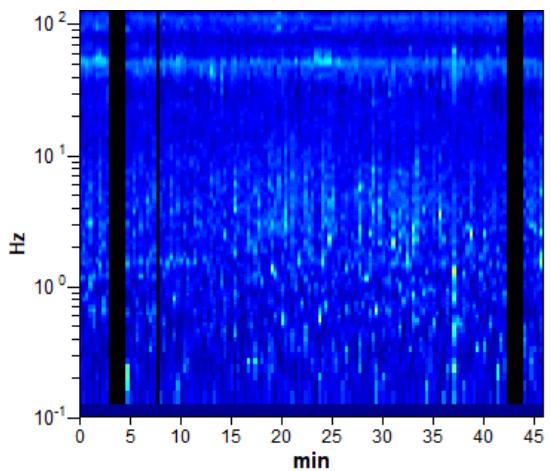
GPS data not available

Trace length: 0h46'00". Analyzed 92% trace (manual window selection)

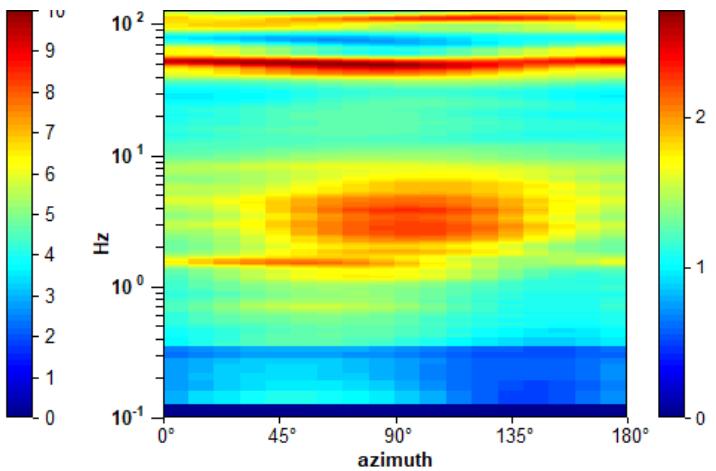
Sampling rate: 256 Hz

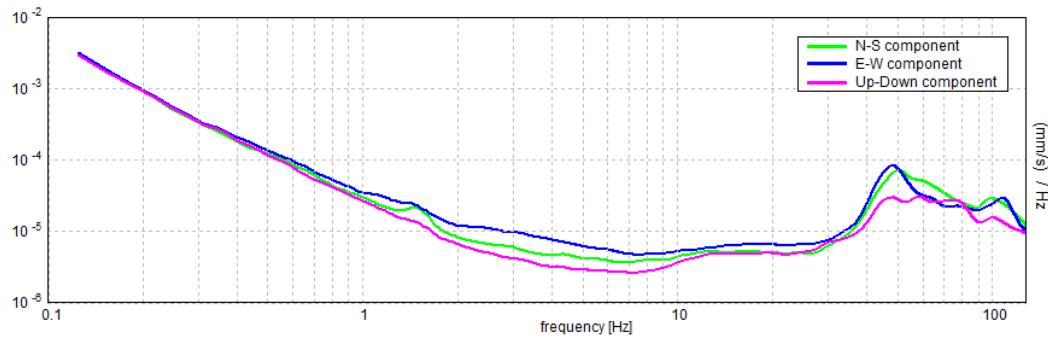

Window size: 20 s

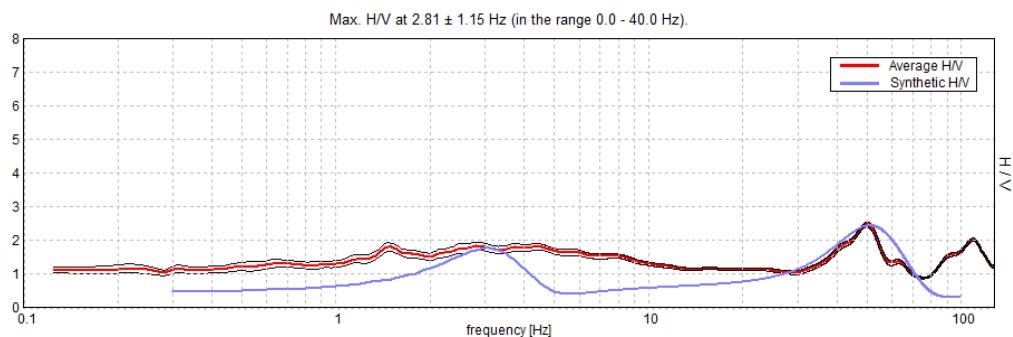
Smoothing type: Triangular window


Smoothing: 10%

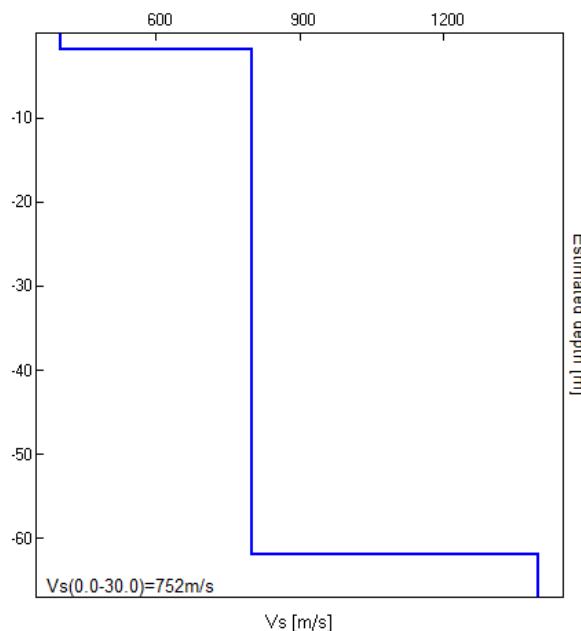
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 2.81 ± 1.15 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.90	1.90	400	0.42
61.90	60.00	800	0.42
inf.	inf.	1400	0.45

$Vs(0.0-30.0)=752$ m/s

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 2.81 ± 1.15 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$2.81 > 0.50$	OK	
$n_c(f_0) > 200$	$7143.8 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 136 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$1.83 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.40896 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$1.15019 < 0.14063$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1245 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T06 (in relazione DIASIS 2012: Stazione HVSR – T6)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

SAN VITO T06

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

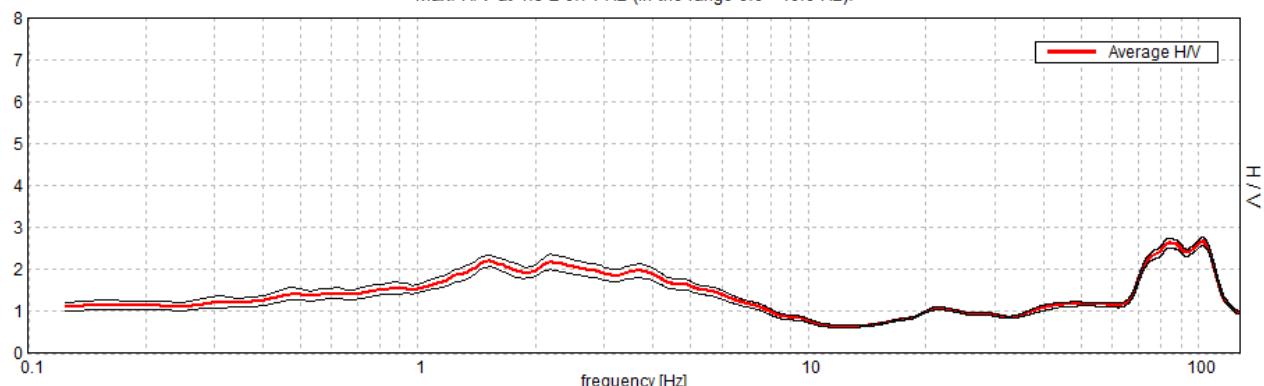
Start recording: 02/08/12 10:16:36 End recording: 02/08/12 11:02:36

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

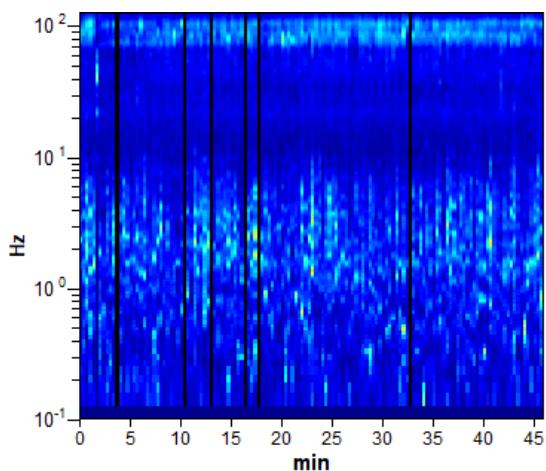
GPS data not available

Trace length: 0h46'00". Analyzed 96% trace (manual window selection)

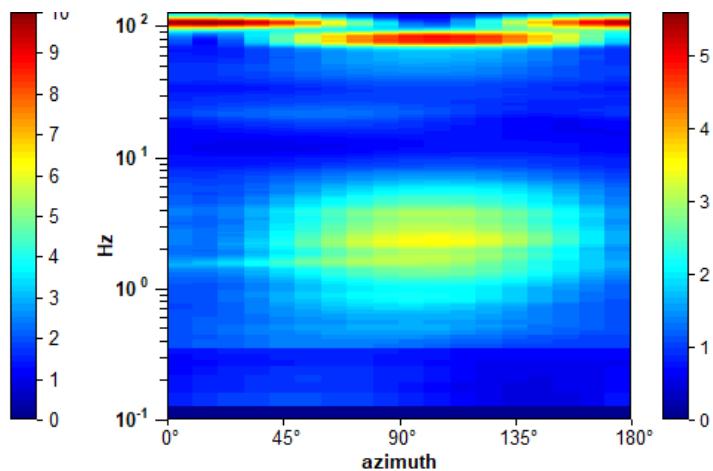
Sampling rate: 256 Hz

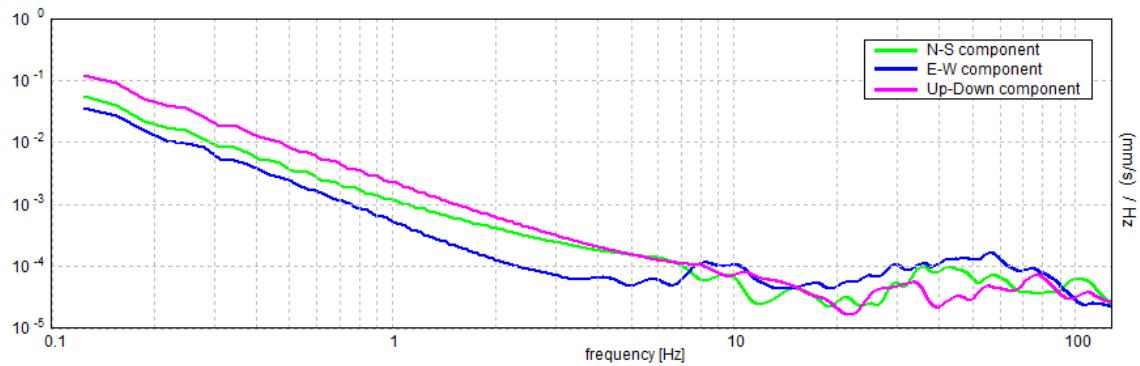

Window size: 20 s

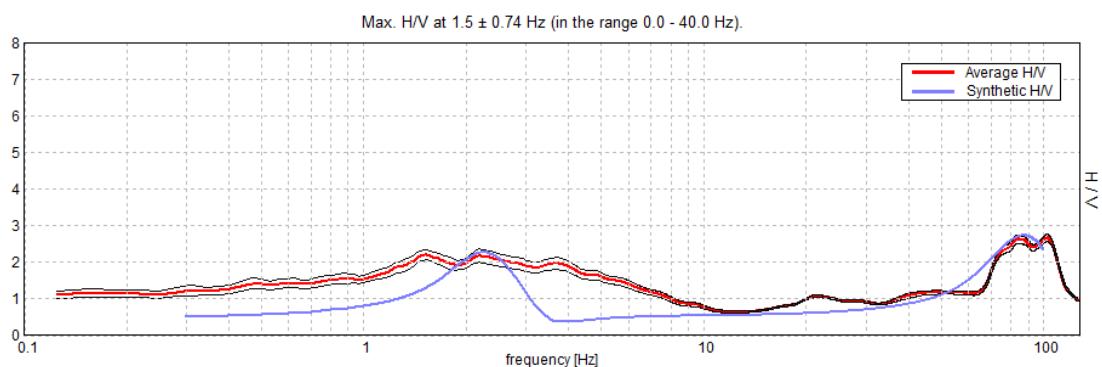
Smoothing type: Triangular window


Smoothing: 10%

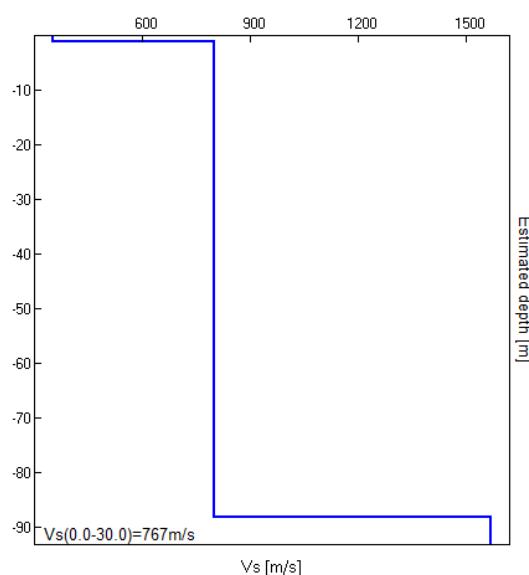
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.5 ± 0.74 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.00	1.00	350	0.37
88.00	87.00	800	0.37
inf.	inf.	1570	0.40

$$Vs(0.0-30.0) = 767 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.5 ± 0.74 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.50 > 0.50$	OK	
$n_c(f_0) > 200$	$3960.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 73 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$2.20 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.49424 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.74136 < 0.15$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.142 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T07 (in relazione DIASIS 2012: Stazione HVSR – T7)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T07

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

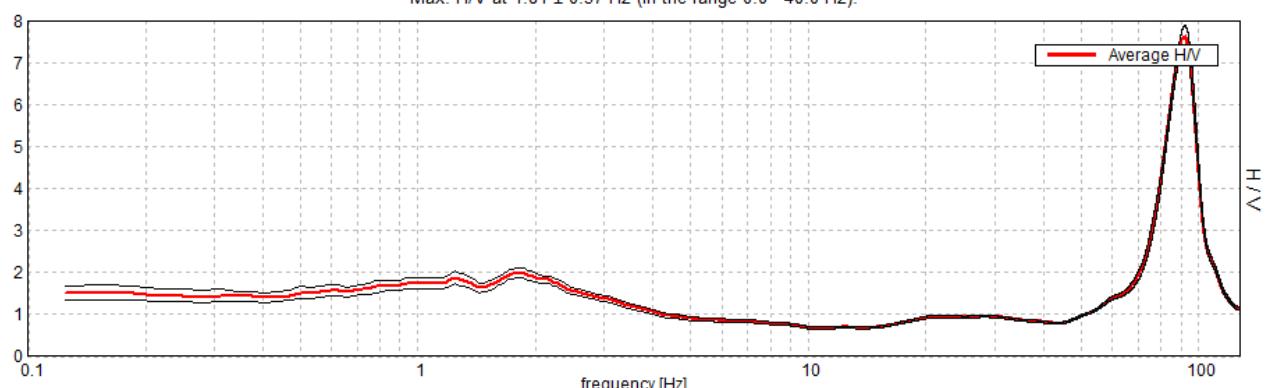
Start recording: 02/08/12 12:27:31 End recording: 02/08/12 13:13:31

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

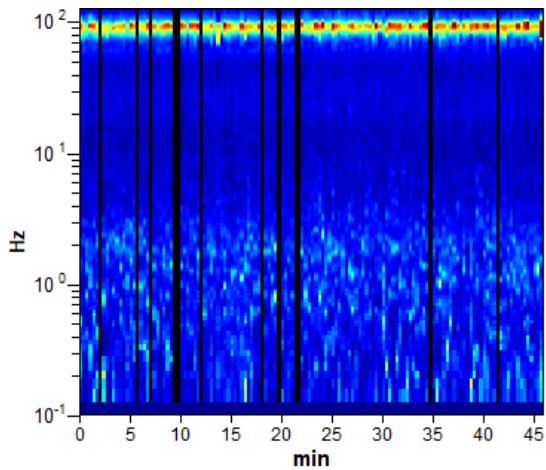
GPS data not available

Trace length: 0h46'00". Analyzed 91% trace (manual window selection)

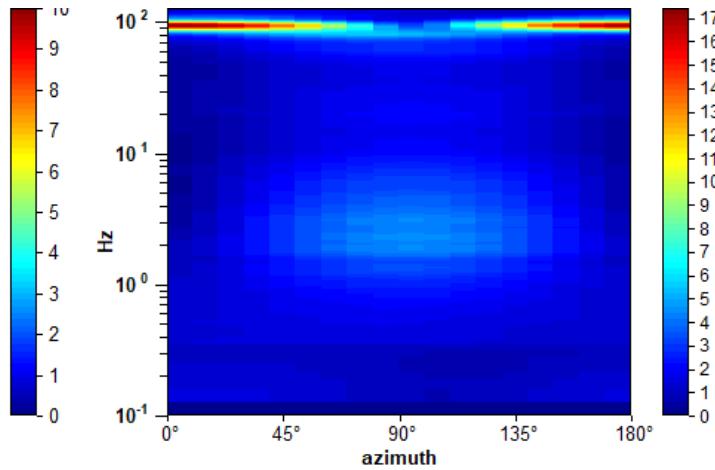
Sampling rate: 256 Hz

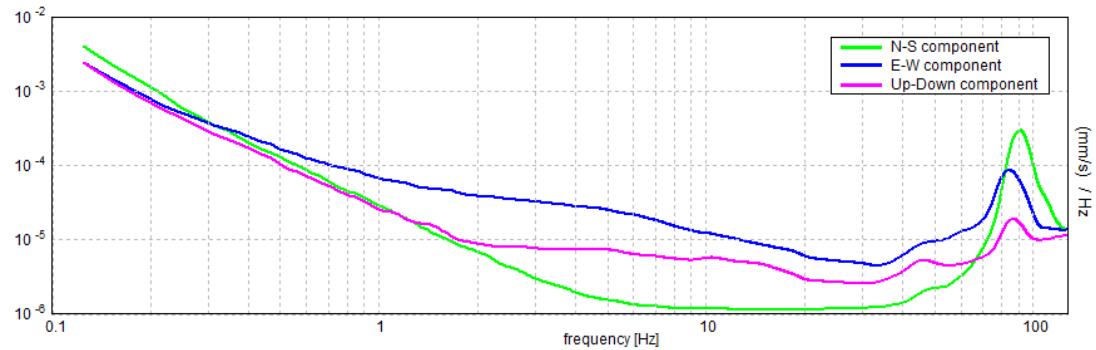

Window size: 20 s

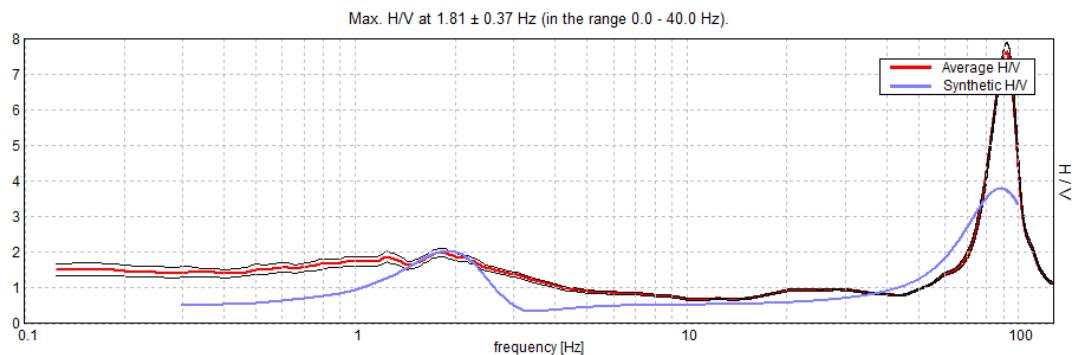
Smoothing type: Triangular window


Smoothing: 10%

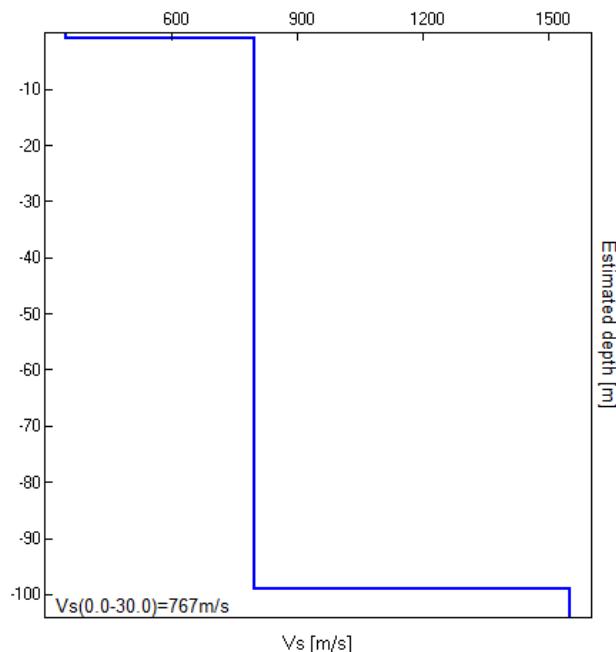
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.81 ± 0.37 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.00	1.00	350	0.42
99.00	98.00	800	0.42
inf.	inf.	1550	0.45

$$Vs(0.0-30.0) = 767 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.81 ± 0.37 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.81 > 0.50$	OK	
$n_c(f_0) > 200$	$4567.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 88 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	4.25 Hz	OK	
$A_0 > 2$	$1.99 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.20571 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.37284 < 0.18125$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1197 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T08 (in relazione DIASIS 2012: Stazione HVSR – T8)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T08

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

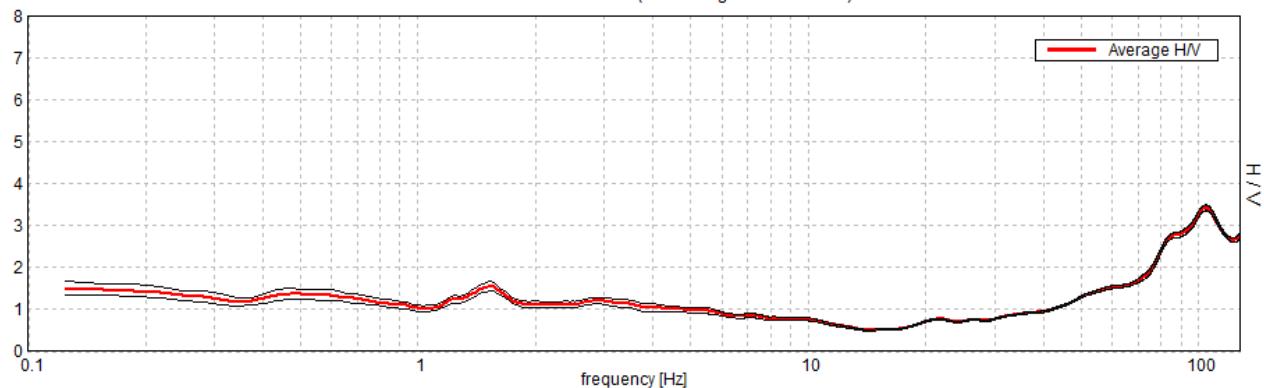
Start recording: 02/08/12 09:22:24 End recording: 02/08/12 10:08:24

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

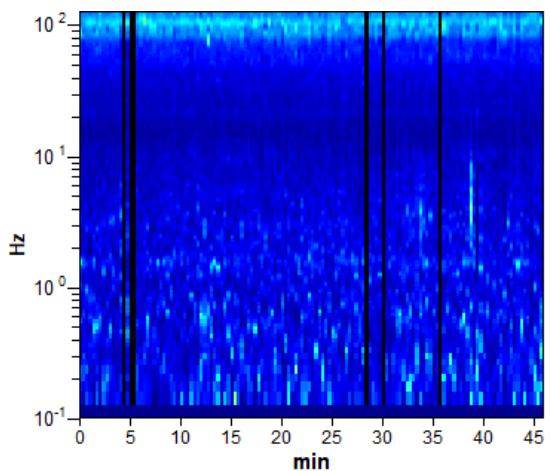
GPS data not available

Trace length: 0h46'00". Analyzed 96% trace (manual window selection)

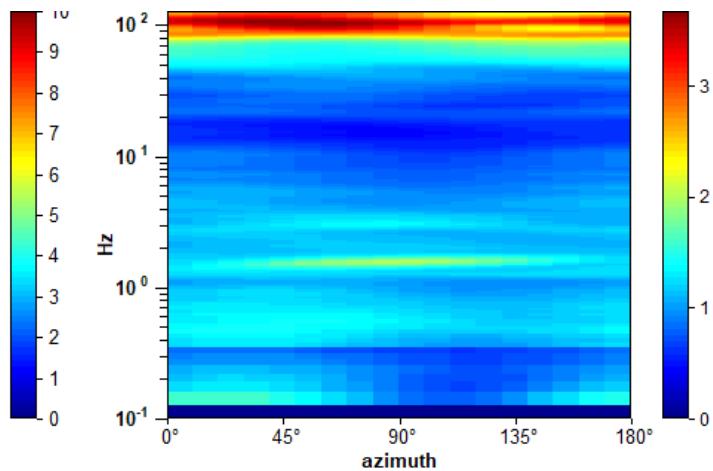
Sampling rate: 256 Hz

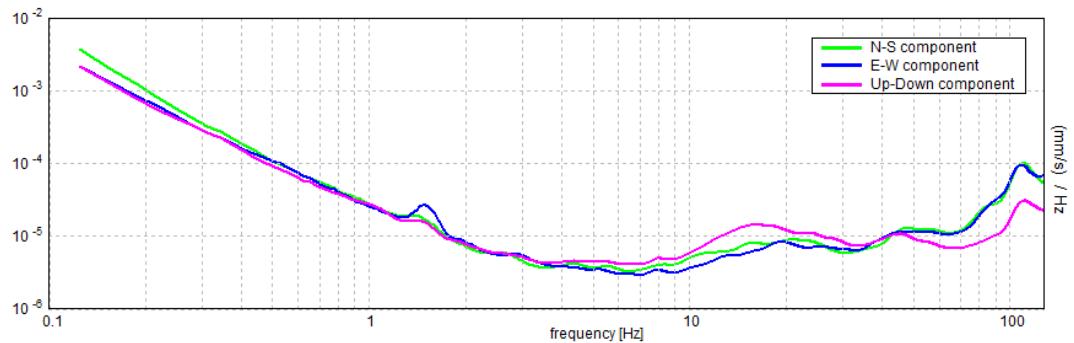

Window size: 20 s

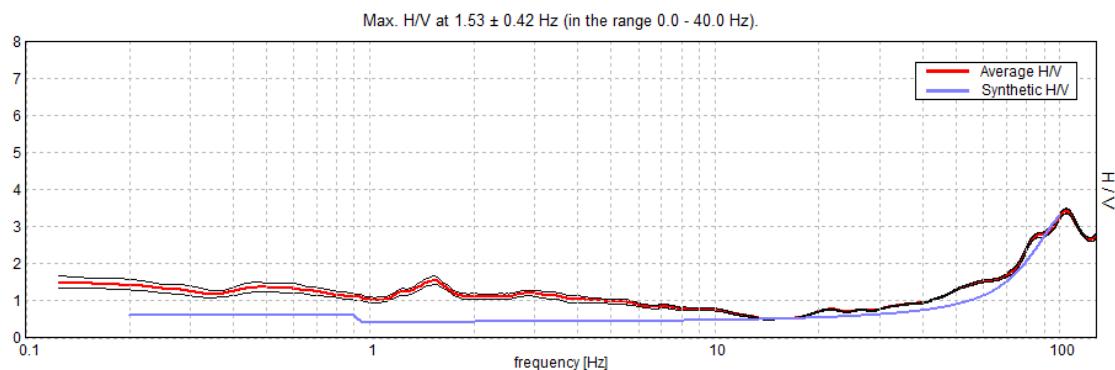
Smoothing type: Triangular window


Smoothing: 10%

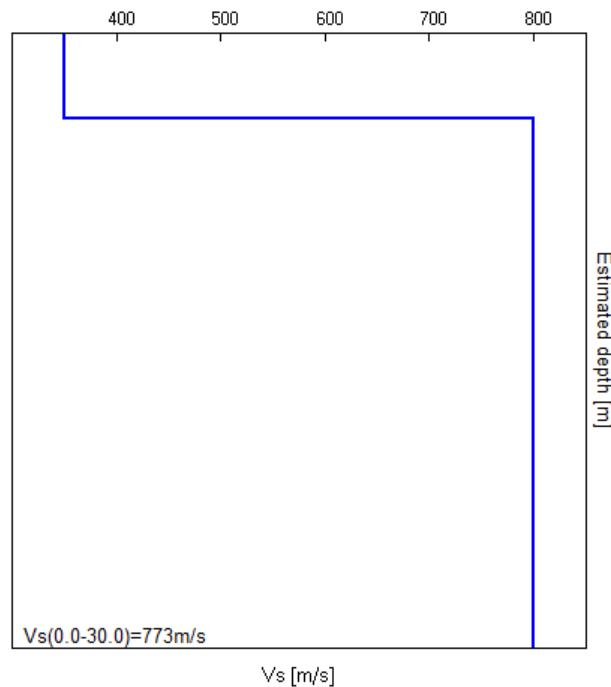
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.53 ± 0.42 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	V_s [m/s]	Poisson ratio
0.80	0.80	350	0.41
inf.	inf.	800	0.41

$$V_s(0.0-30.0) = 773 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.53 ± 0.42 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.53 > 0.50$	OK	
$n_c(f_0) > 200$	$4042.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 74 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$1.55 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.27471 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.42065 < 0.15313$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1109 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T09 (in relazione DIASIS 2012: Stazione HVSR – T9)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T09

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

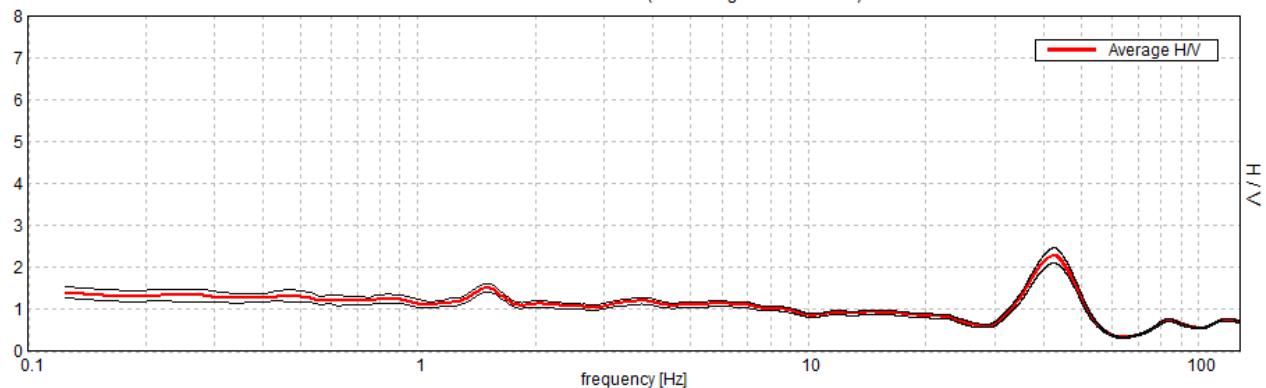
Start recording: 01/08/12 15:44:16 End recording: 01/08/12 16:30:16

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

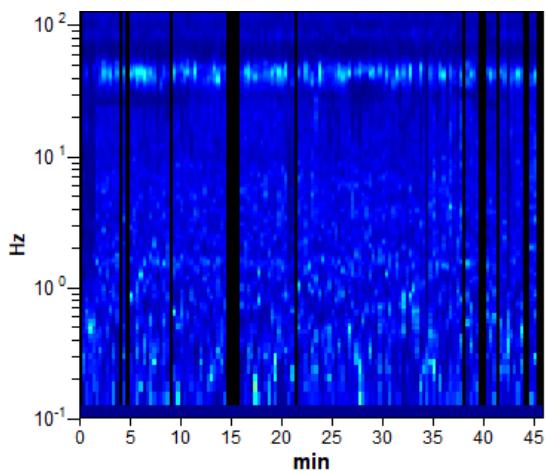
GPS data not available

Trace length: 0h46'00". Analyzed 88% trace (manual window selection)

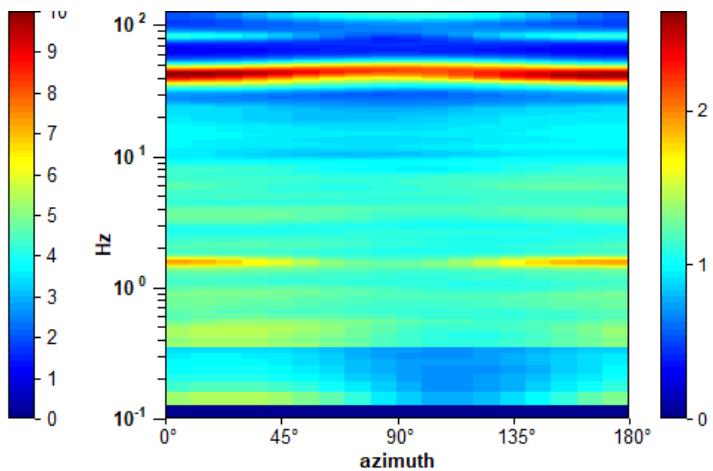
Sampling rate: 256 Hz

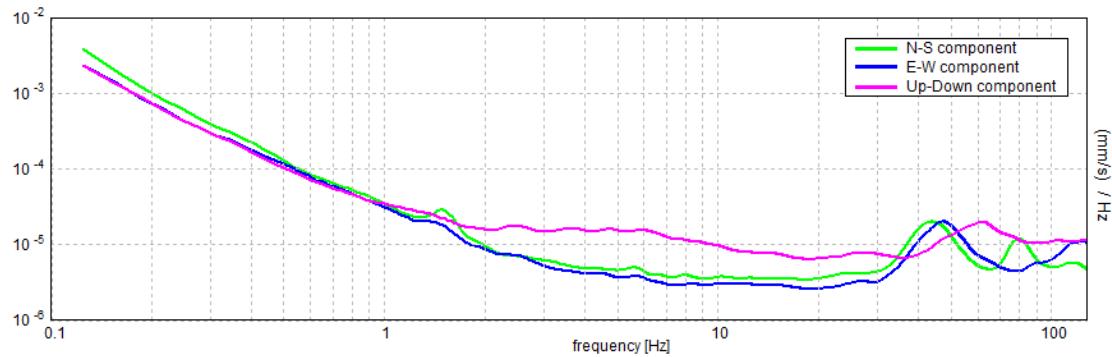

Window size: 20 s

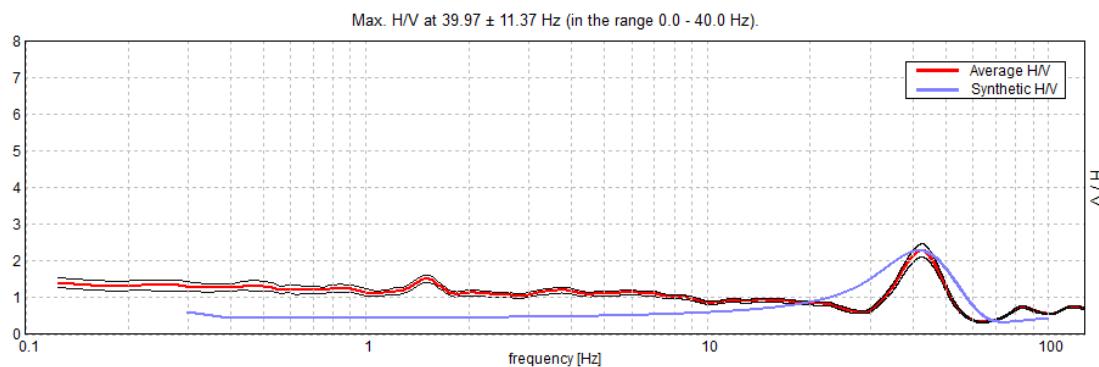
Smoothing type: Triangular window


Smoothing: 10%

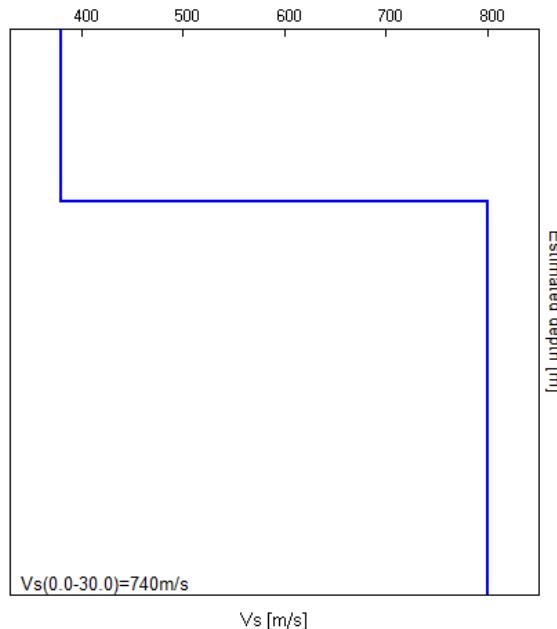
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 39.97 ± 11.37 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.20	2.20	380	0.39
inf.	inf.	800	0.39

$$Vs(0.0-30.0)=740 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 39.97 ± 11.37 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$39.97 > 0.50$	OK	
$n_c(f_0) > 200$	$96724.4 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 1920 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	33.375 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	51.344 Hz	OK	
$A_0 > 2$	$2.12 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.28438 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$11.36629 < 1.99844$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1574 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T10 (in relazione DIASIS 2012: Stazione HVSR – T10)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T10

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

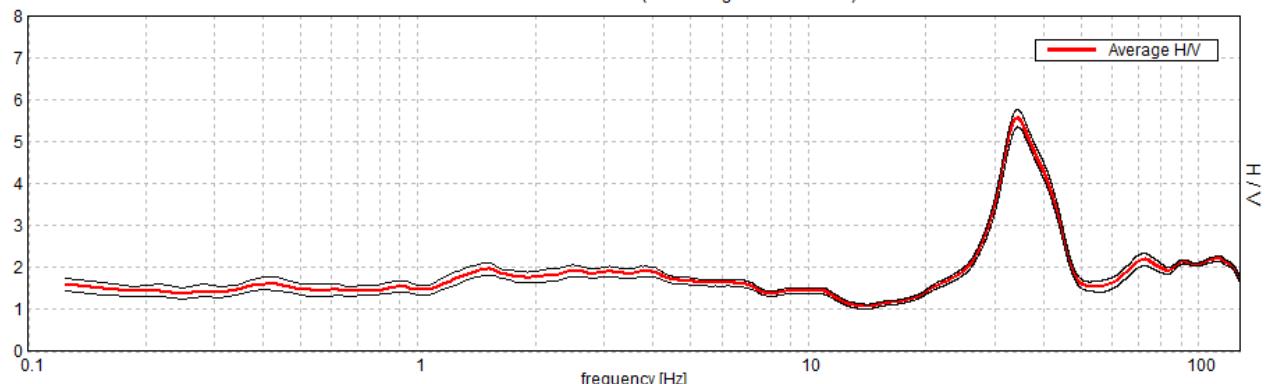
Start recording: 02/08/12 10:25:24 End recording: 02/08/12 11:11:24

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

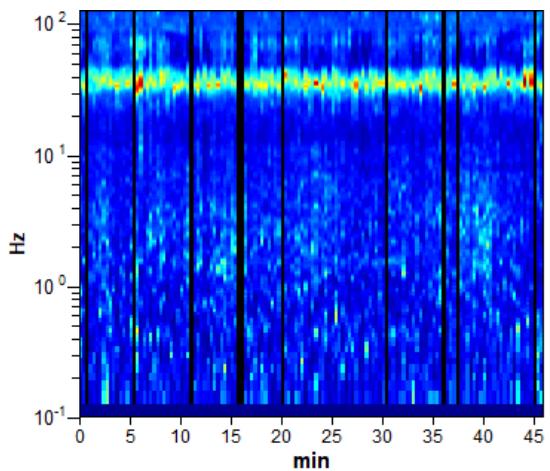
GPS data not available

Trace length: 0h46'00". Analyzed 93% trace (manual window selection)

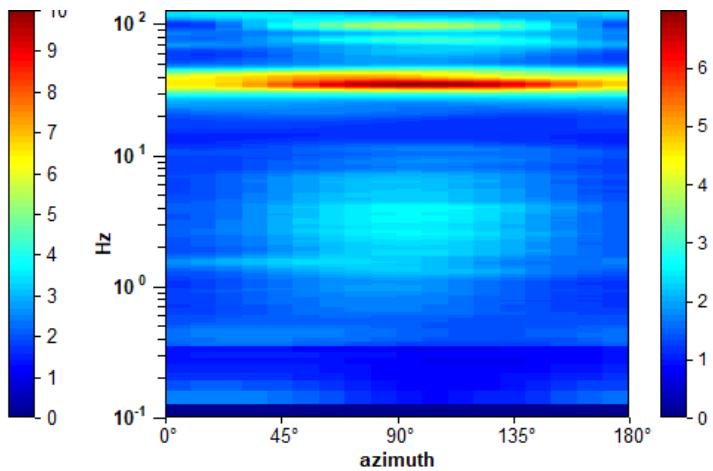
Sampling rate: 256 Hz

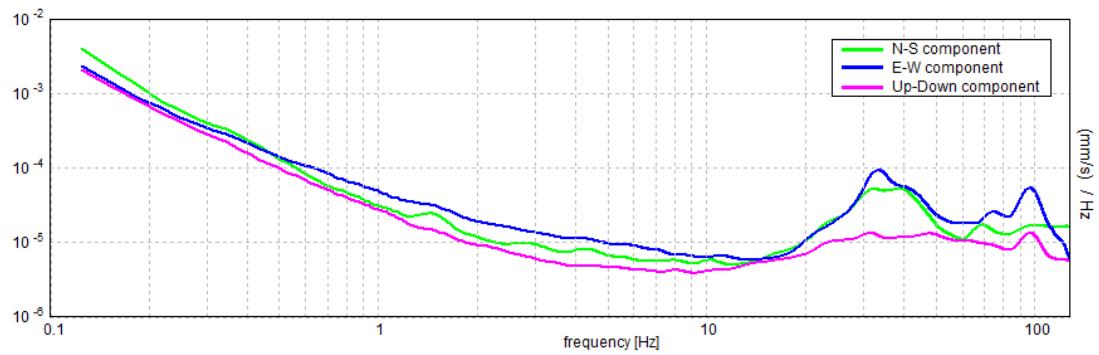

Window size: 20 s

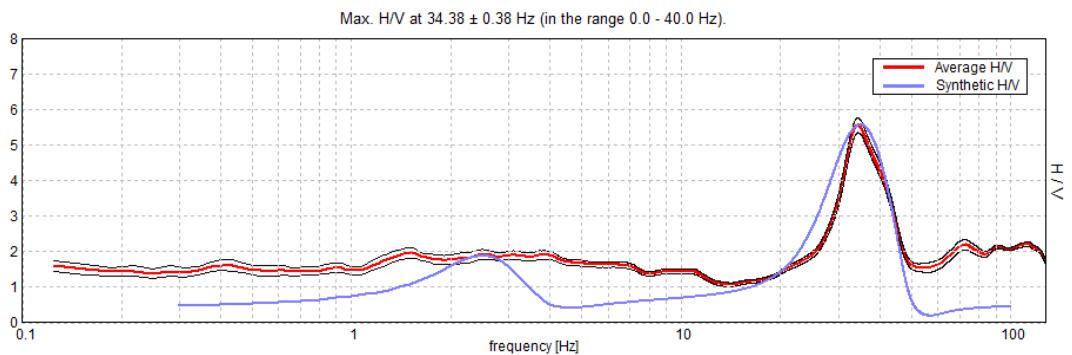
Smoothing type: Triangular window


Smoothing: 10%

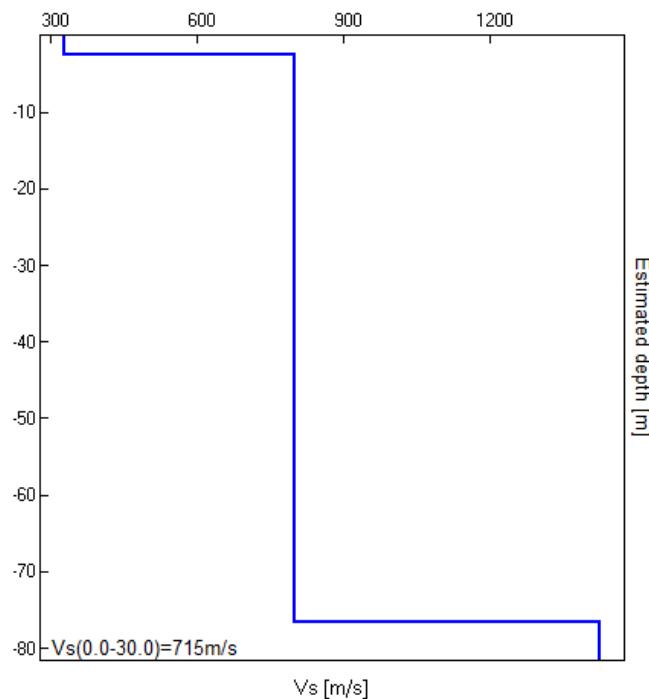
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 34.38 ± 0.38 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.50	2.50	330	0.42
76.50	74.00	800	0.42
inf.	inf.	1425	0.42

$$Vs(0.0-30.0)=715 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 34.38 ± 0.38 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$34.38 > 0.50$	OK	
$n_c(f_0) > 200$	$88000.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 1651 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	28.406 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	44.906 Hz	OK	
$A_0 > 2$	$5.56 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.01099 < 0.05$	OK	
$\sigma_f < \varepsilon(f_0)$	$0.37777 < 1.71875$	OK	
$\sigma_A(f_0) < \theta(f_0)$	$0.2099 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T11 (in relazione DIASIS 2012: Stazione HVSR – T11)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T11

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

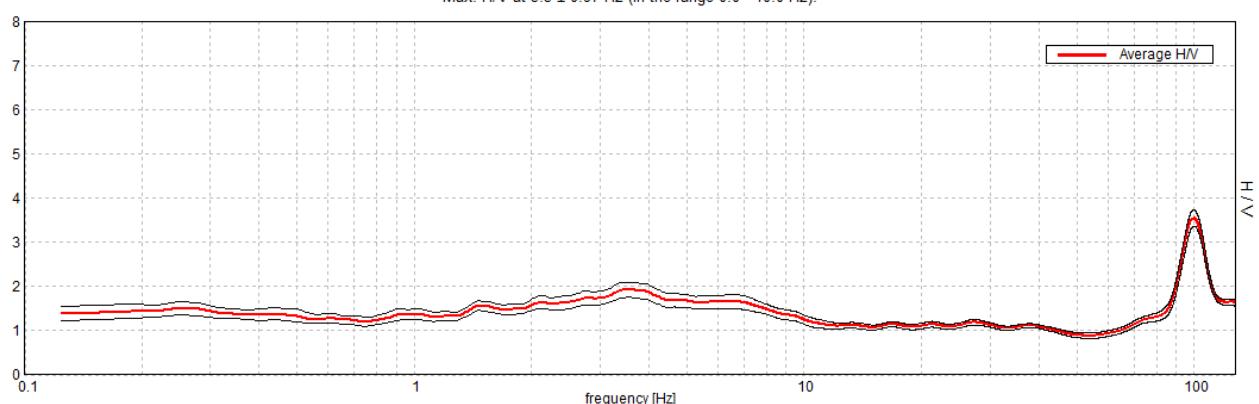
Start recording: 02/08/12 11:17:45 End recording: 02/08/12 12:03:45

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

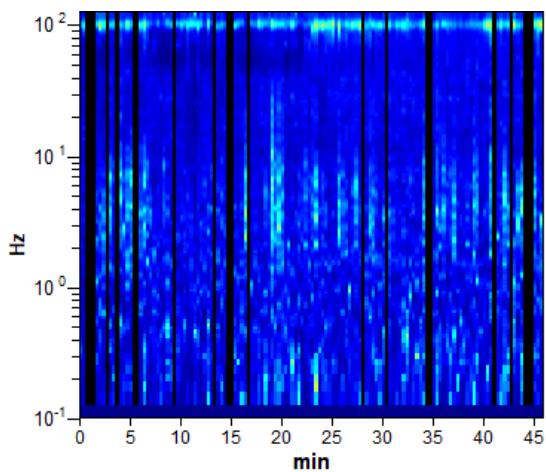
GPS data not available

Trace length: 0h46'00". Analyzed 85% trace (manual window selection)

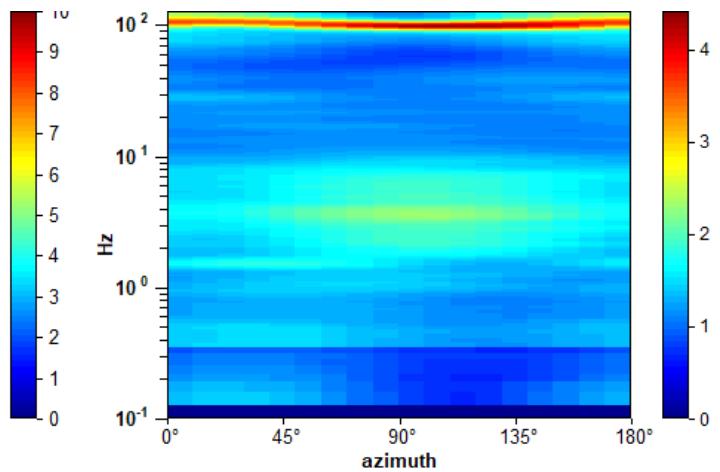
Sampling rate: 256 Hz

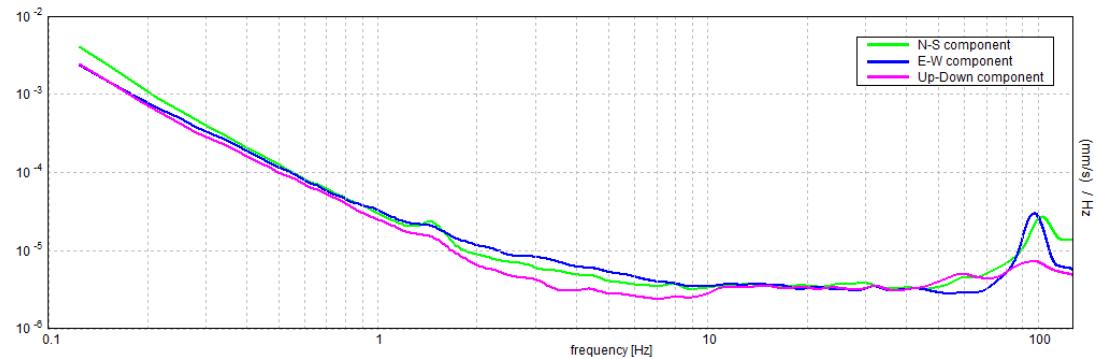

Window size: 20 s

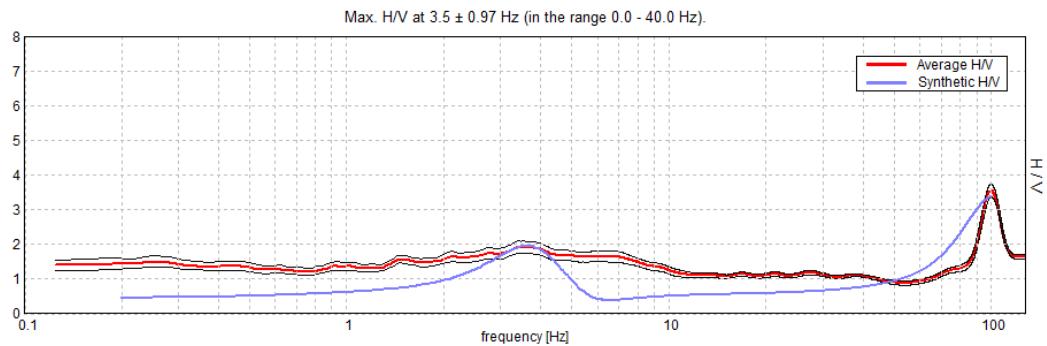
Smoothing type: Triangular window


Smoothing: 10%

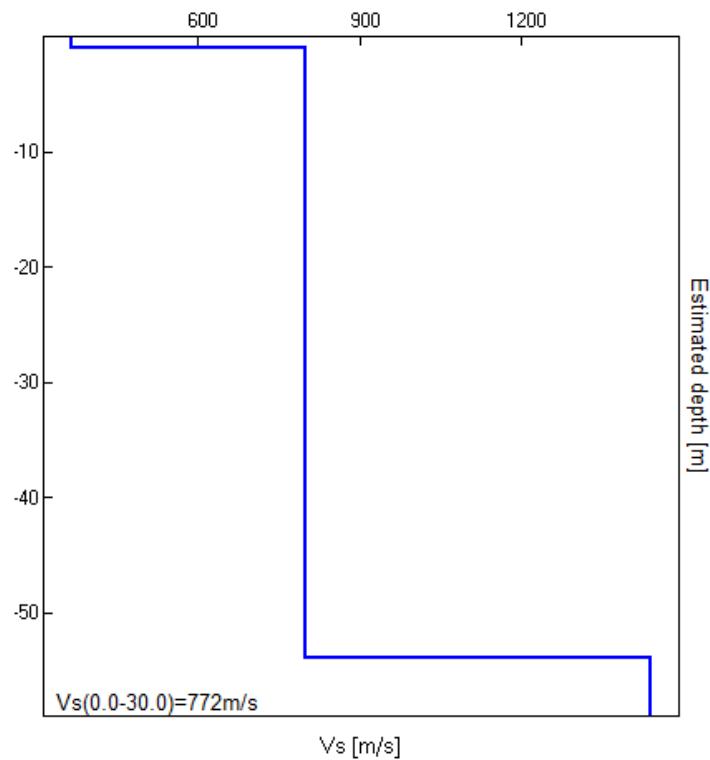
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 3.5 ± 0.97 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.90	0.90	365	0.40
53.90	53.00	800	0.40
inf.	inf.	1440	0.40

$Vs(0.0-30.0) = 772 \text{ m/s}$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 3.5 ± 0.97 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$3.50 > 0.50$	OK	
$n_c(f_0) > 200$	$8190.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 169 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$1.92 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.27592 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.96573 < 0.175$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1702 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T12 (in relazione DIASIS 2012: Stazione HVSR – T12)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T12

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

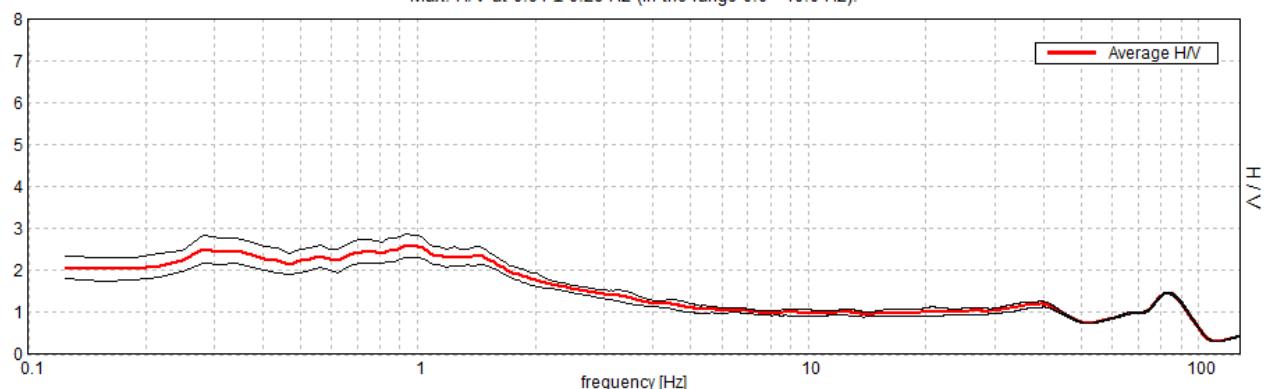
Start recording: 01/08/12 16:46:51 End recording: 01/08/12 17:32:50

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

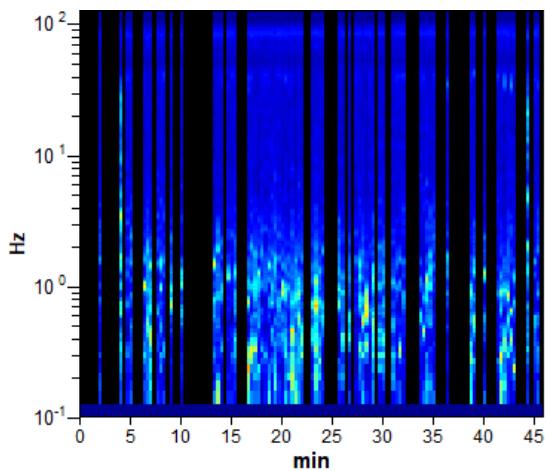
GPS data not available

Trace length: 0h46'00". Analyzed 52% trace (manual window selection)

Sampling rate: 256 Hz

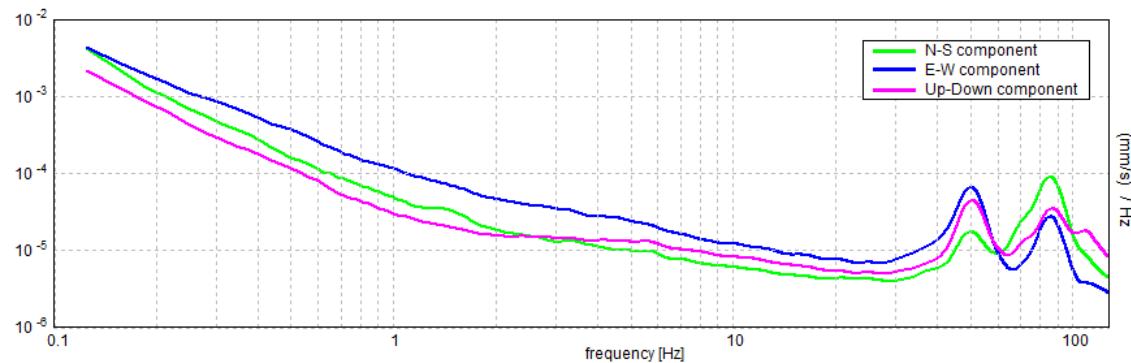

Window size: 20 s

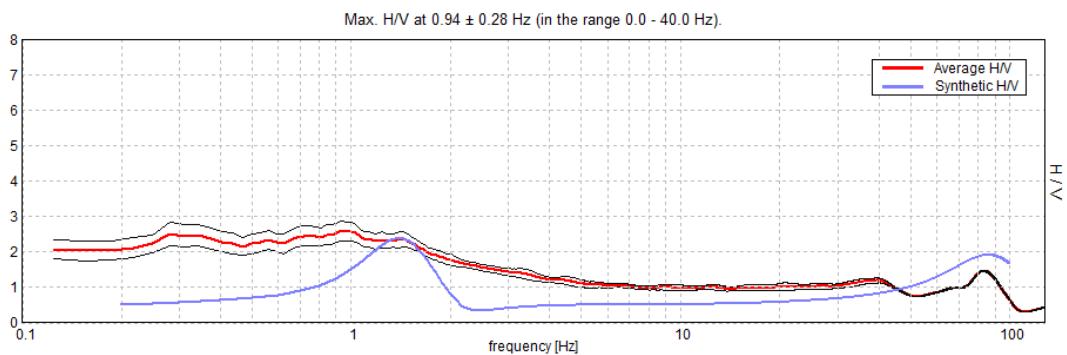
Smoothing type: Triangular window


Smoothing: 10%

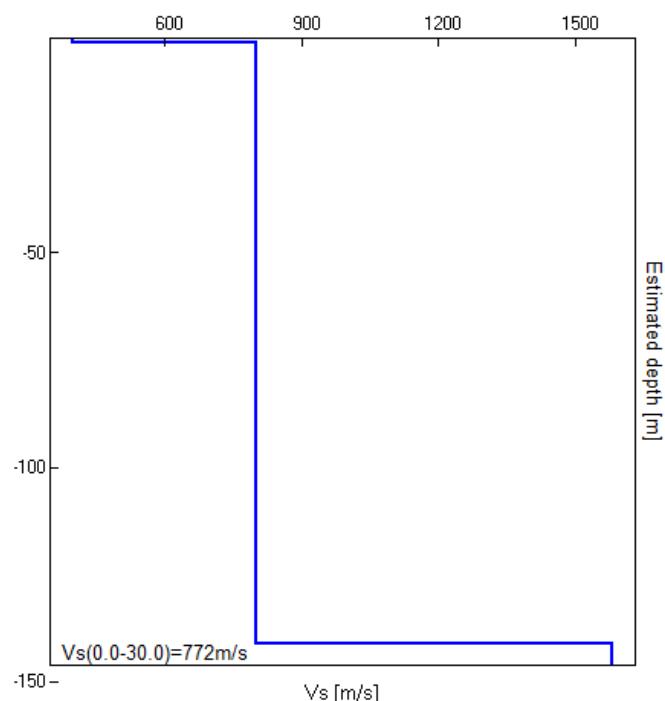
HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 0.94 ± 0.28 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.10	1.10	400	0.39
141.10	140.00	800	0.39
inf.	inf.	1580	0.40

$$Vs(0.0-30.0) = 772 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 0.94 ± 0.28 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$0.94 > 0.50$	OK	
$n_c(f_0) > 200$	$1350.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 46 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	3.625 Hz	OK	
$A_0 > 2$	$2.60 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.29982 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.28108 < 0.14063$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.2781 < 2.0$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T13 (in relazione DIASIS 2012: Stazione HVSR – T31)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

SAN VITO T13

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

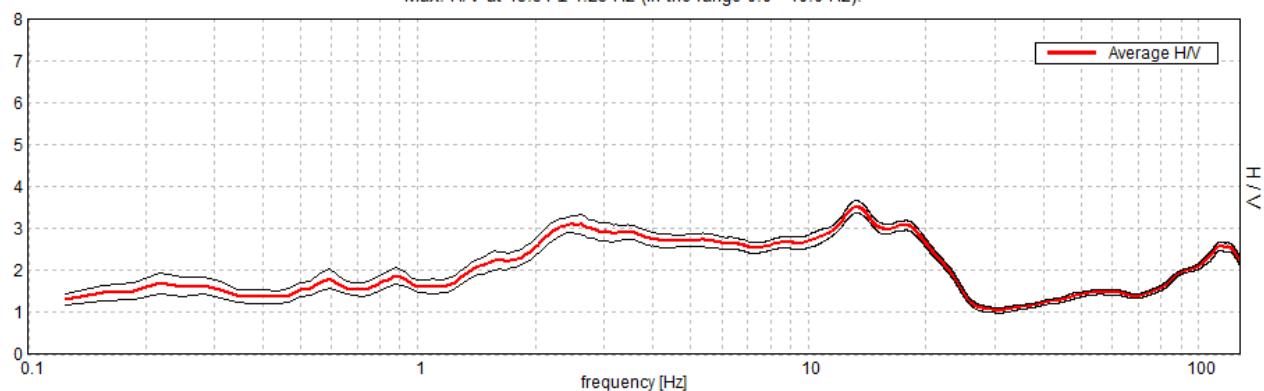
Start recording: 05/09/12 11:36:28 End recording: 05/09/12 12:22:28

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

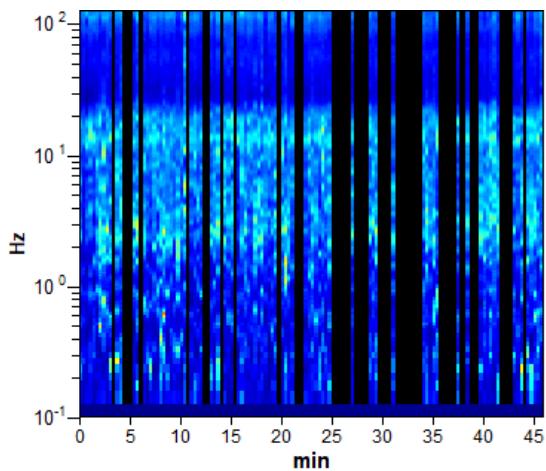
GPS data not available

Trace length: 0h46'00". Analyzed 63% trace (manual window selection)

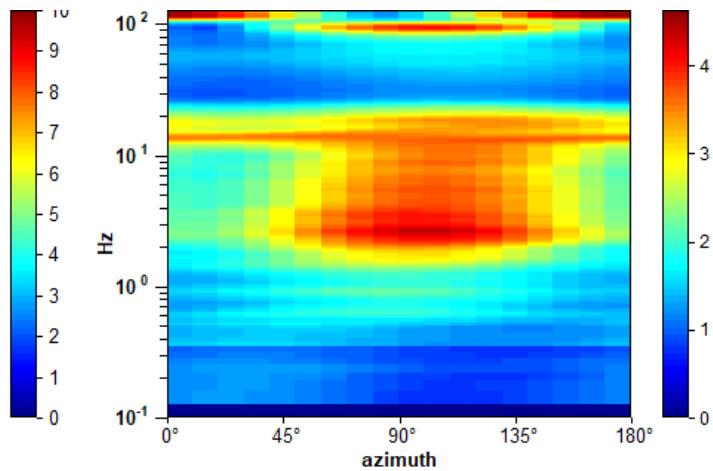
Sampling rate: 256 Hz

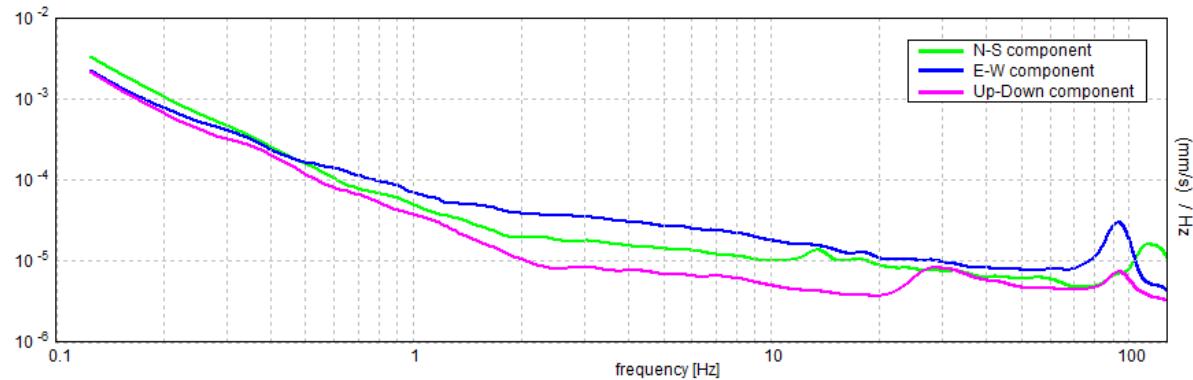

Window size: 20 s

Smoothing type: Triangular window

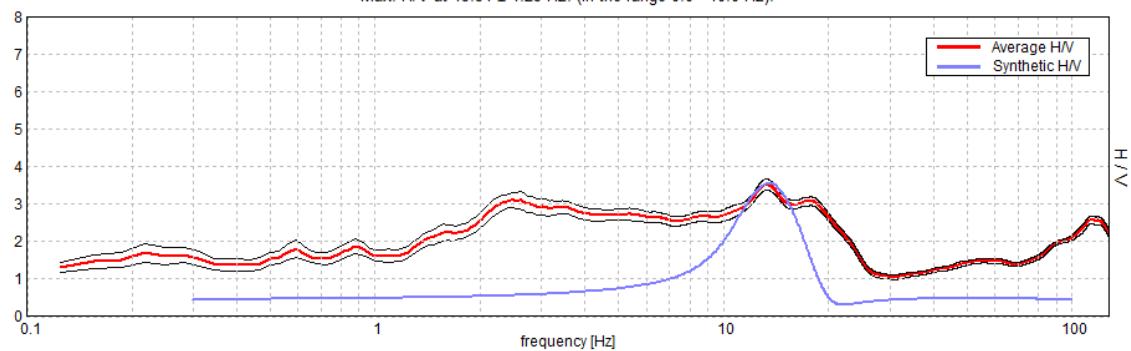

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 13.31 ± 1.23 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V



SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

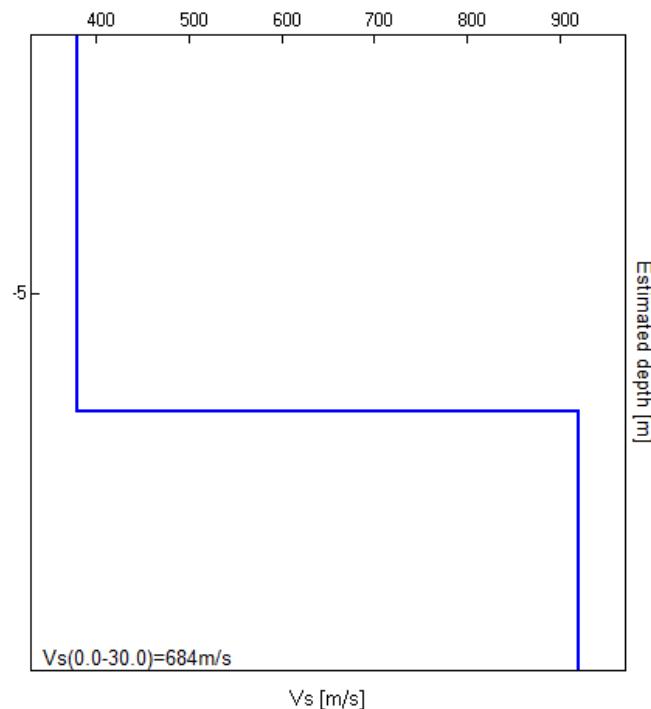
Max. H/V at 13.31 ± 1.23 Hz. (In the range 0.0 - 40.0 Hz).

Depth at the bottom of the layer [m]

7.30
inf.

Thickness [m]

7.30
inf.


Vs [m/s]

380
920

Poisson ratio

0.35
0.35

$\text{Vs}(0.0-30.0)=684 \text{ m/s}$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

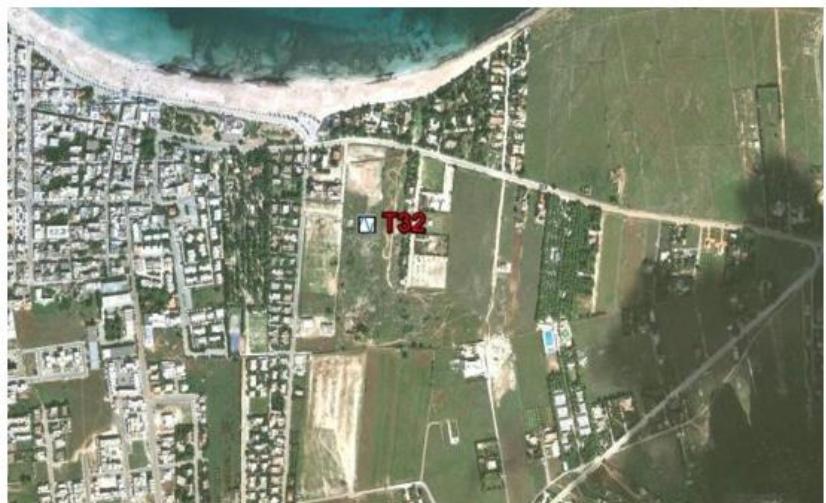
Max. H/V at 13.31 ± 1.23 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$13.31 > 0.50$	OK	
$n_c(f_0) > 200$	$23163.8 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 640 times	OK	

Criteria for a clear H/V peak


[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$		NO	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	23.938 Hz	OK	
$A_0 > 2$	$3.52 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.09261 < 0.05$	NO	
$\sigma_f < \varepsilon(f_0)$	$1.23291 < 0.66563$	NO	
$\sigma_A(f_0) < \theta(f_0)$	$0.147 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SAN VITO T14 (in relazione DIASIS 2012: Stazione HVSR – T32)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

SAN VITO T14

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

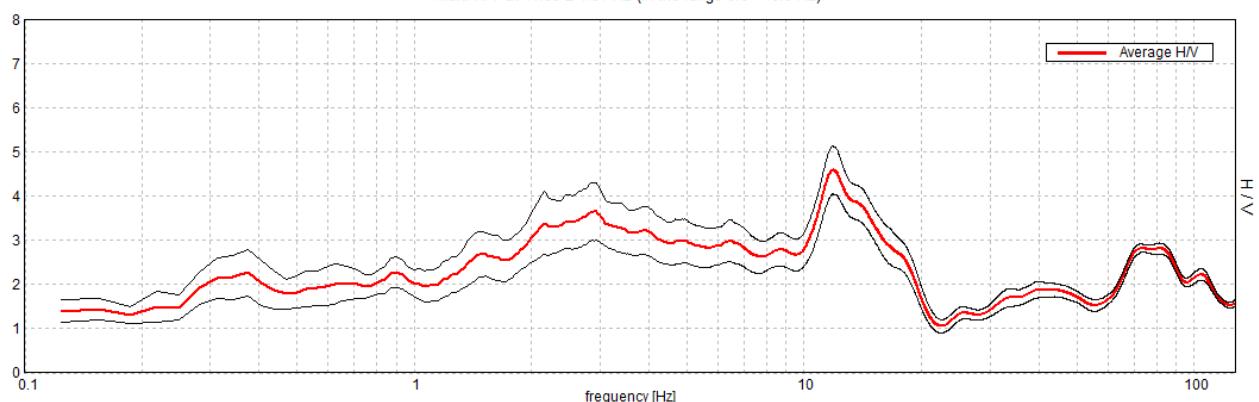
Start recording: 05/09/12 11:42:27 End recording: 05/09/12 12:28:27

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

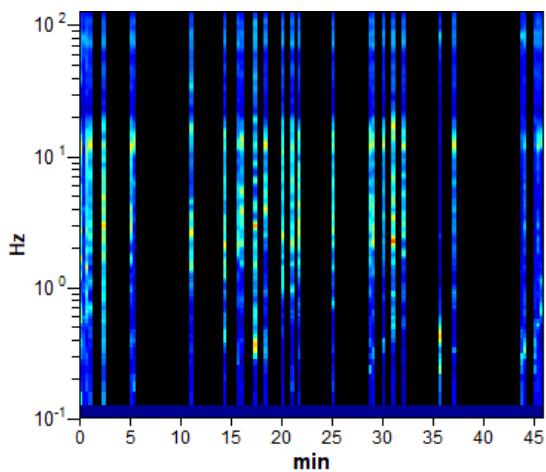
GPS data not available

Trace length: 0h46'00". Analyzed 21% trace (manual window selection)

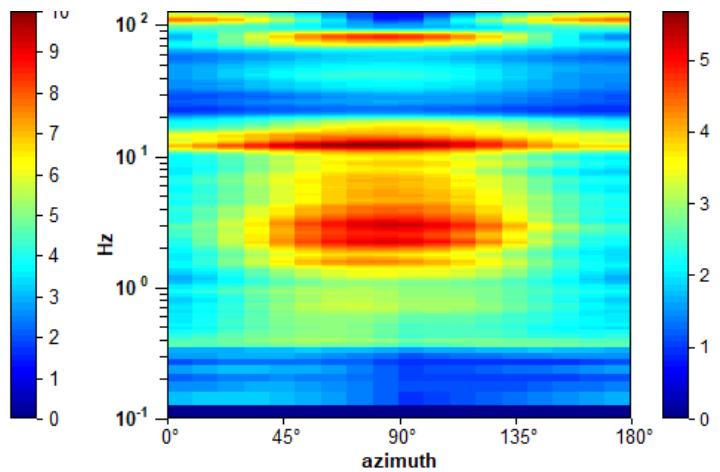
Sampling rate: 256 Hz


Window size: 20 s

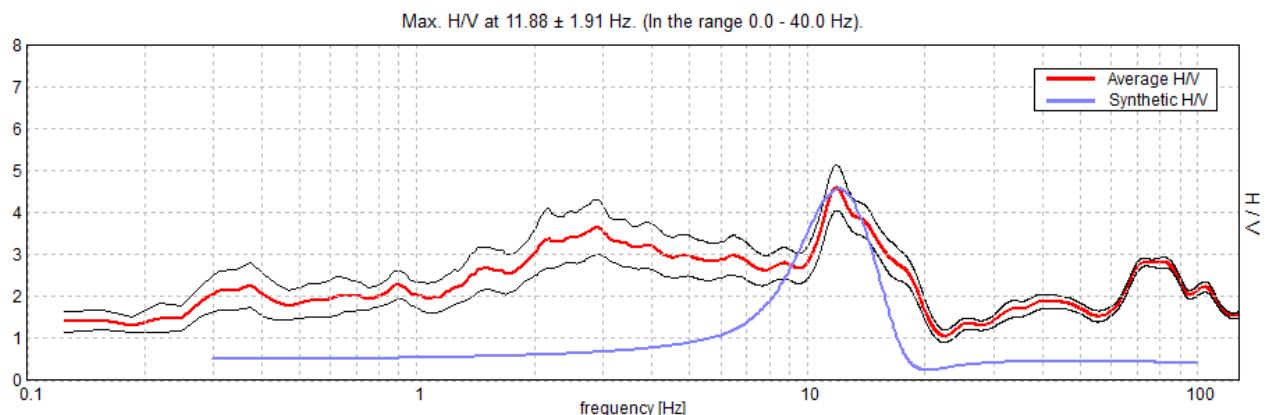
Smoothing type: Triangular window


Smoothing: 10%

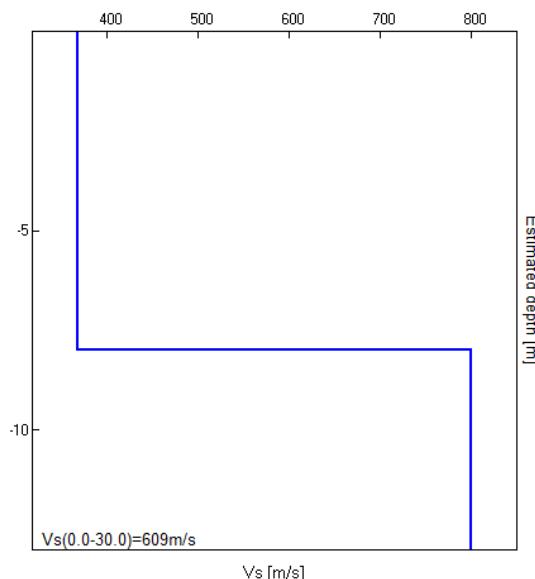
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 11.88 ± 1.91 Hz (in the range 0.0 - 40.0 Hz).

H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
8.00	8.00	368	0.45
inf.	inf.	800	0.25

$Vs(0.0-30.0)=609$ m/s

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

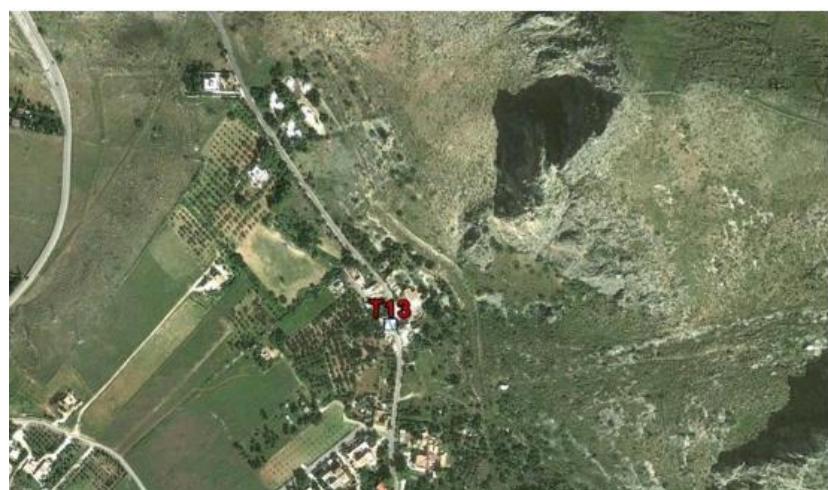
Max. H/V at 11.88 ± 1.91 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$11.88 > 0.50$	OK	
$n_c(f_0) > 200$	$6887.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 571 times	OK	

Criteria for a clear H/V peak


[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$		NO	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	18.844 Hz	OK	
$A_0 > 2$	$4.59 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.1608 < 0.05$	NO	
$\sigma_f < \varepsilon(f_0)$	$1.90945 < 0.59375$	NO	
$\sigma_A(f_0) < \theta(f_0)$	$0.544 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T15 (in relazione DIASIS 2012: Stazione HVSR – T13)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T15

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

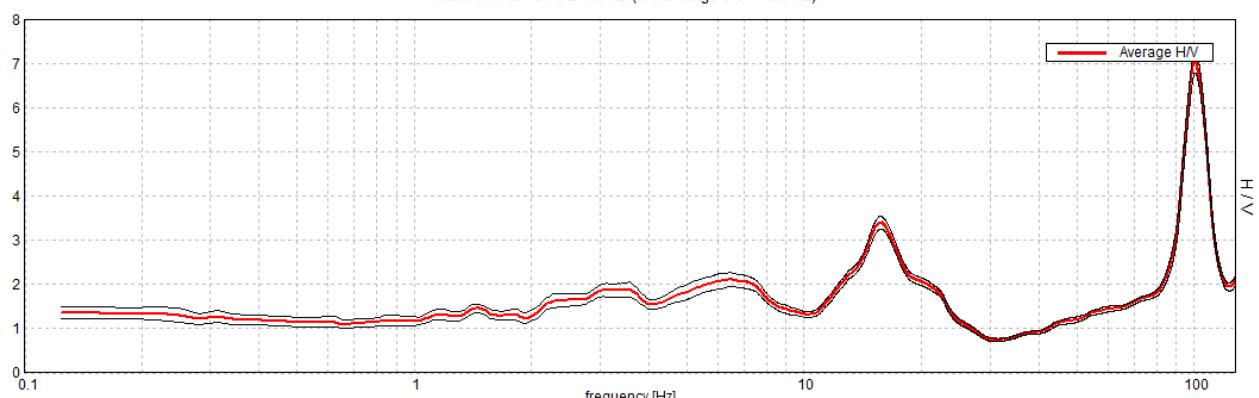
Start recording: 03/08/12 13:17:11 End recording: 03/08/12 14:03:11

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

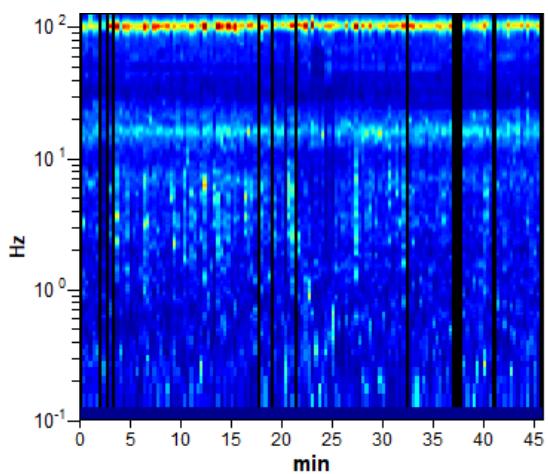
GPS data not available

Trace length: 0h46'00". Analyzed 91% trace (manual window selection)

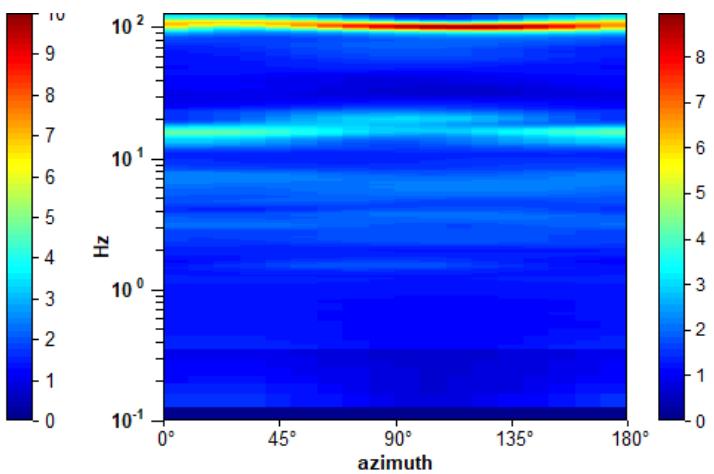
Sampling rate: 256 Hz

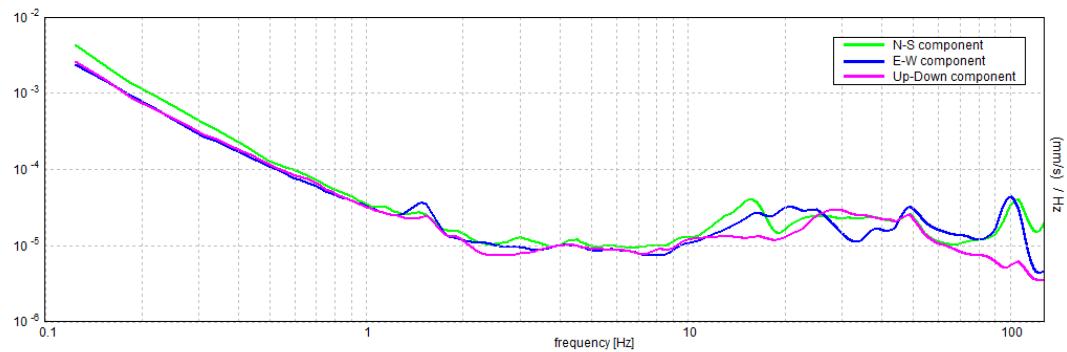

Window size: 20 s

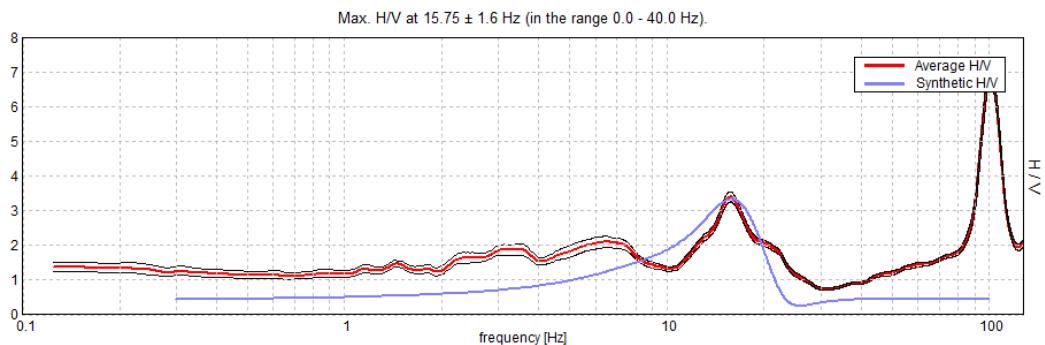
Smoothing type: Triangular window


Smoothing: 10%

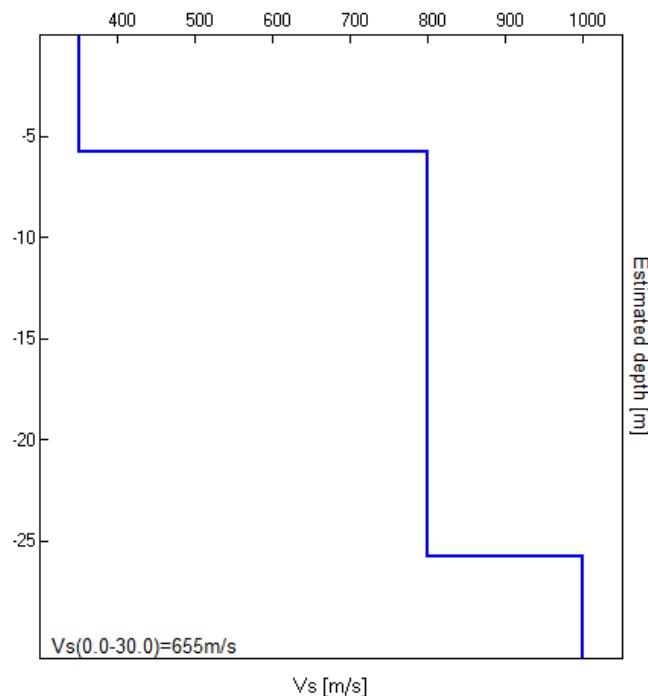
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 15.75 ± 1.6 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
5.80	5.80	350	0.40
25.80	20.00	800	0.40
inf.	inf.	1000	0.40

$Vs(0.0-30.0)=655$ m/s

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 15.75 ± 1.6 Hz (in the range 0.0 - 40.0 Hz).

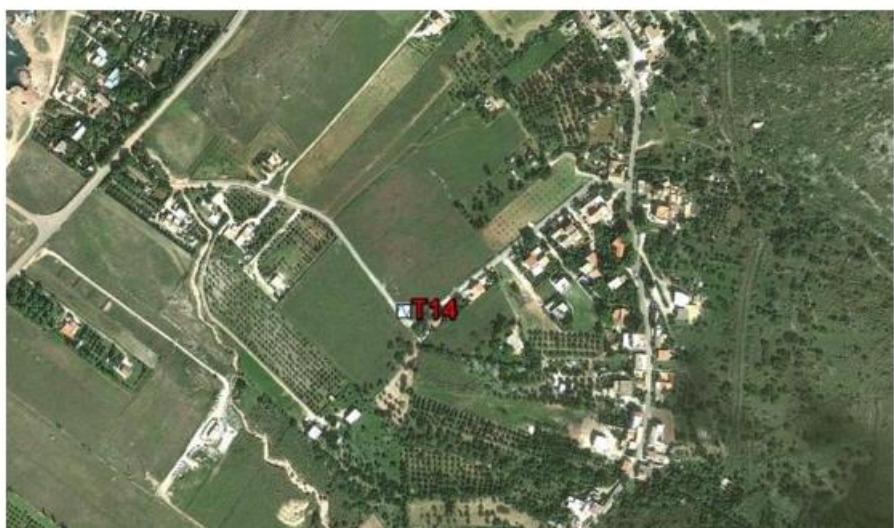
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$15.75 > 0.50$	OK	
$n_c(f_0) > 200$	$39375.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 757 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	11.688 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	22.781 Hz	OK	
$A_0 > 2$	$3.40 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.10149 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$1.59839 < 0.7875$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1431 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T16 (in relazione DIASIS 2012: Stazione HVSR – T14)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T16

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

Start recording: 03/08/12 13:45:21 End recording: 03/08/12 14:31:21

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

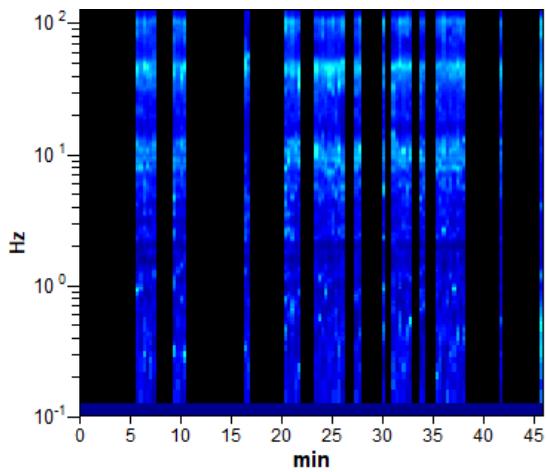
GPS data not available

Trace length: 0h46'00". Analyzed 35% trace (manual window selection)

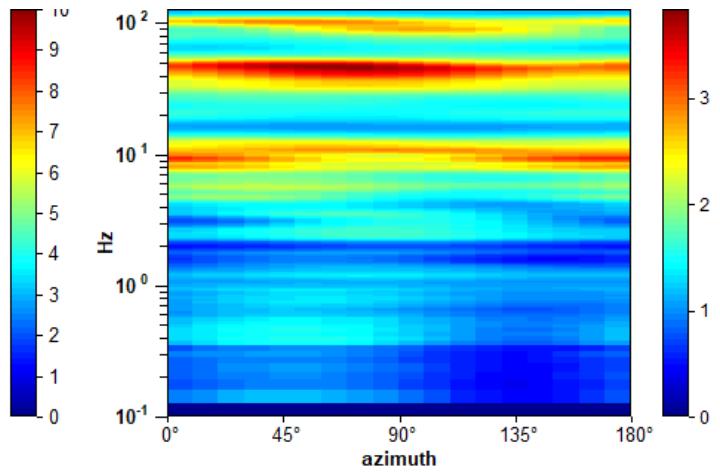
Sampling rate: 256 Hz

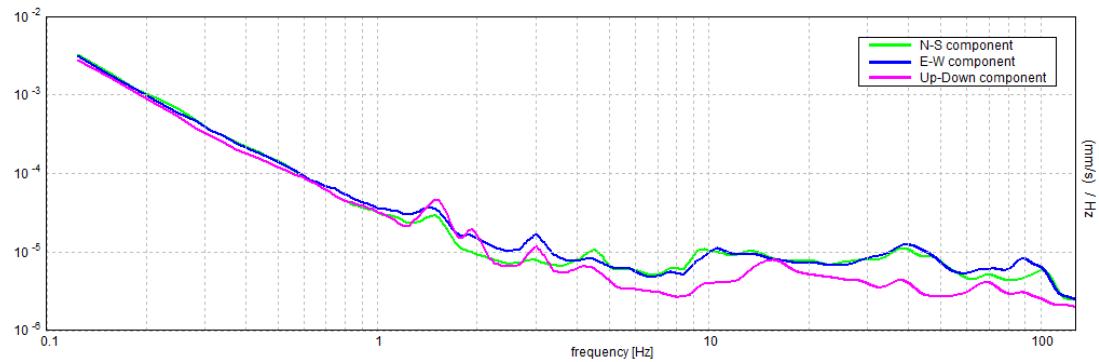
Window size: 20 s

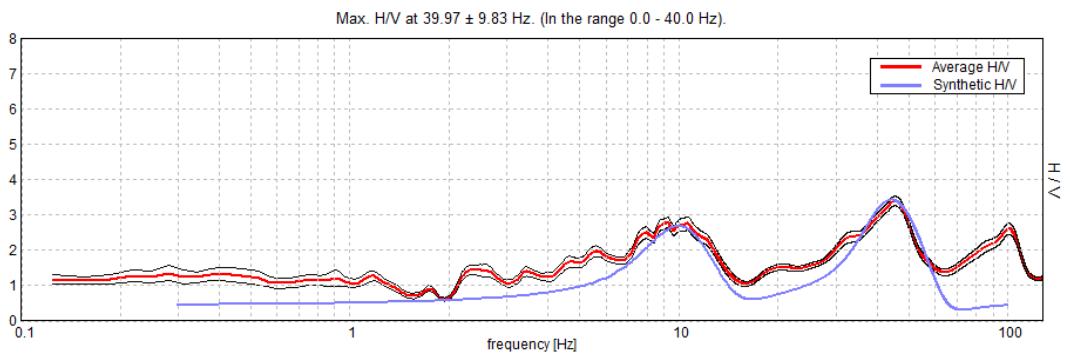
Smoothing type: Triangular window


Smoothing: 10%

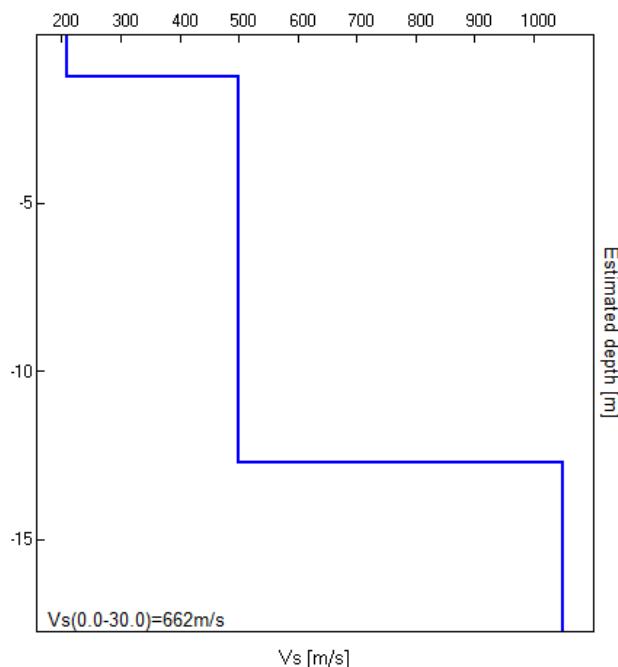
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 39.97 ± 9.83 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.22	1.22	208	0.35
12.72	11.50	500	0.35
inf.	inf.	1050	0.35

$\text{Vs}(0.0-30.0) = 662 \text{ m/s}$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 39.97 ± 9.83 Hz (in the range 0.0 - 40.0 Hz).

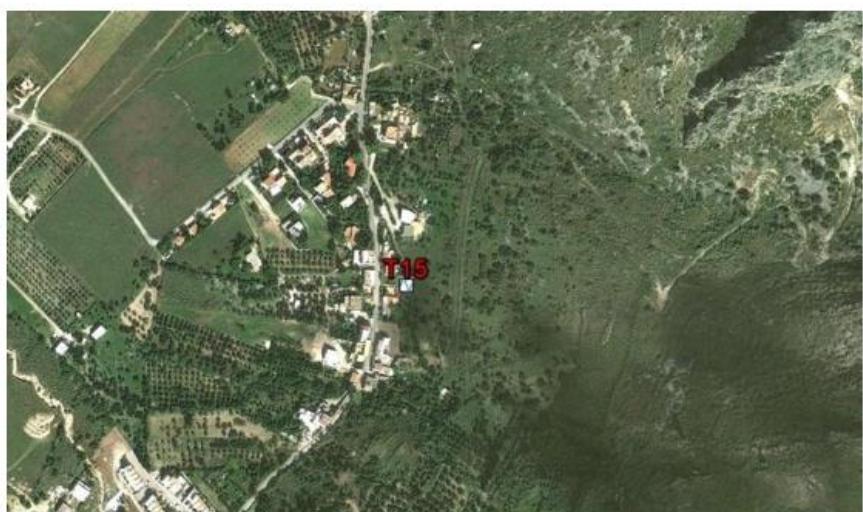
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$39.97 > 0.50$	OK	
$n_c(f_0) > 200$	$38370.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 1920 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	19.156 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	60.438 Hz	OK	
$A_0 > 2$	$2.92 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.2459 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$9.82818 < 1.99844$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1275 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T17 (in relazione DIASIS 2012: Stazione HVSR – T15)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T17

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

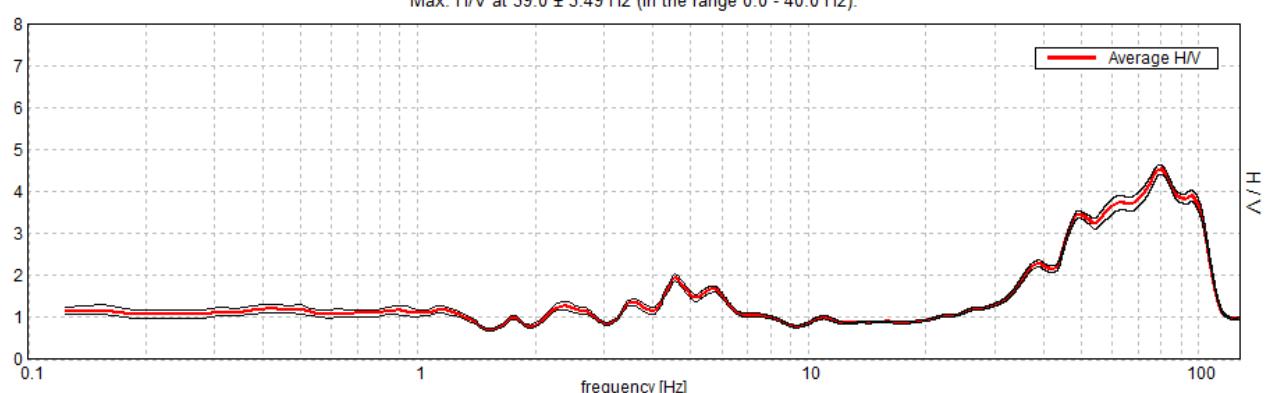
Start recording: 03/08/12 12:47:42 End recording: 03/08/12 13:33:42

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

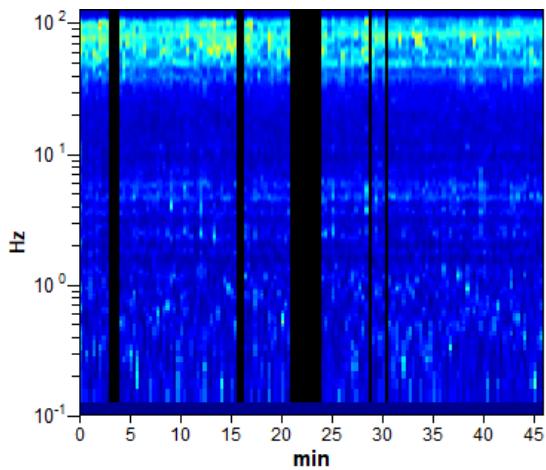
GPS data not available

Trace length: 0h46'00". Analyzed 88% trace (manual window selection)

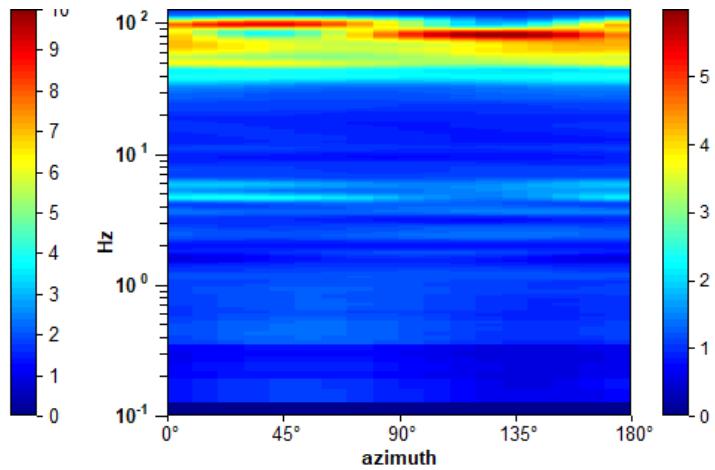
Sampling rate: 256 Hz

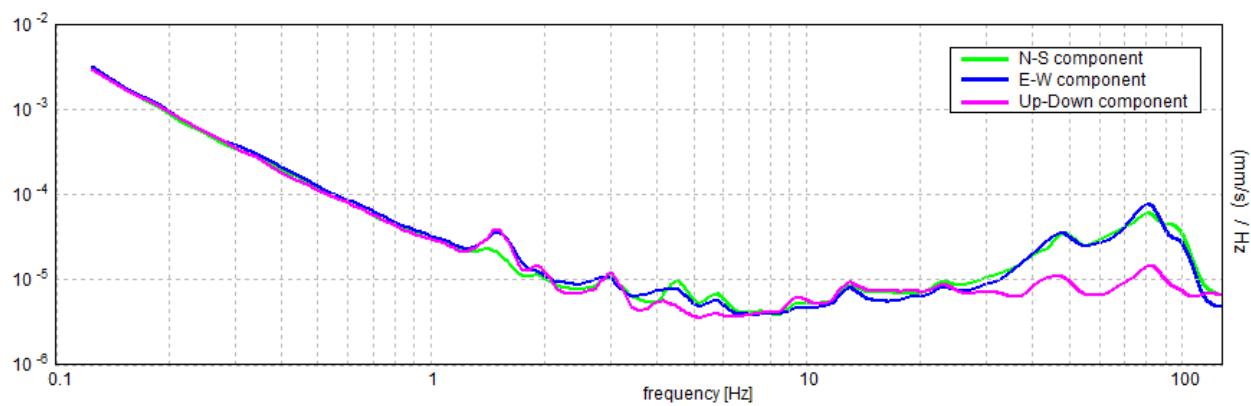

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 39.0 \pm 3.49 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 39.0 ± 3.49 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$39.00 > 0.50$	OK	
$n_c(f_0) > 200$	$95160.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 1873 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	25.313 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	114.656 Hz	OK	
$A_0 > 2$	$2.29 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.0896 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$3.49451 < 1.95$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.0793 < 1.58$		

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T18 (in relazione DIASIS 2012: Stazione HVSR – T16)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T18

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

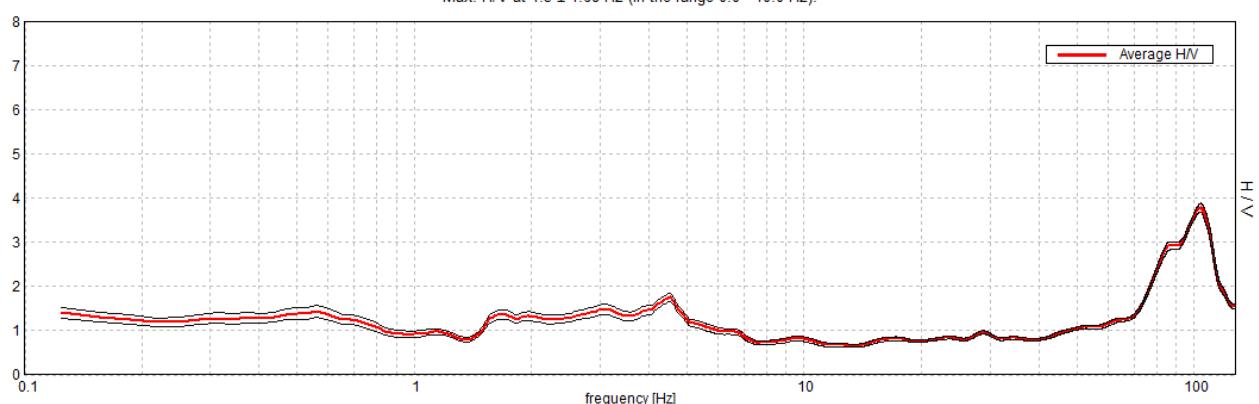
Start recording: 03/08/12 12:17:02 End recording: 03/08/12 13:03:02

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

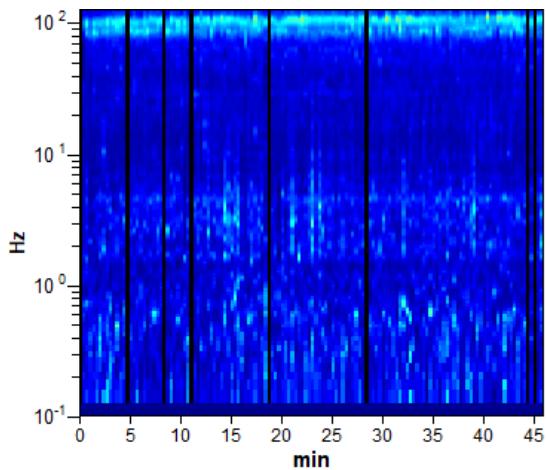
GPS data not available

Trace length: 0h46'00". Analyzed 94% trace (manual window selection)

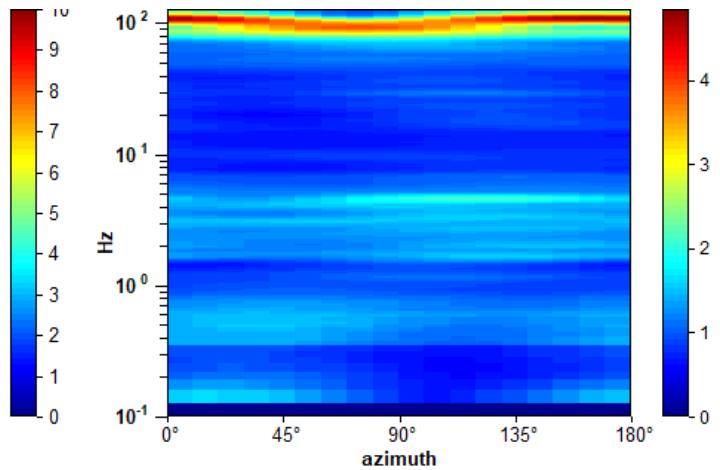
Sampling rate: 256 Hz

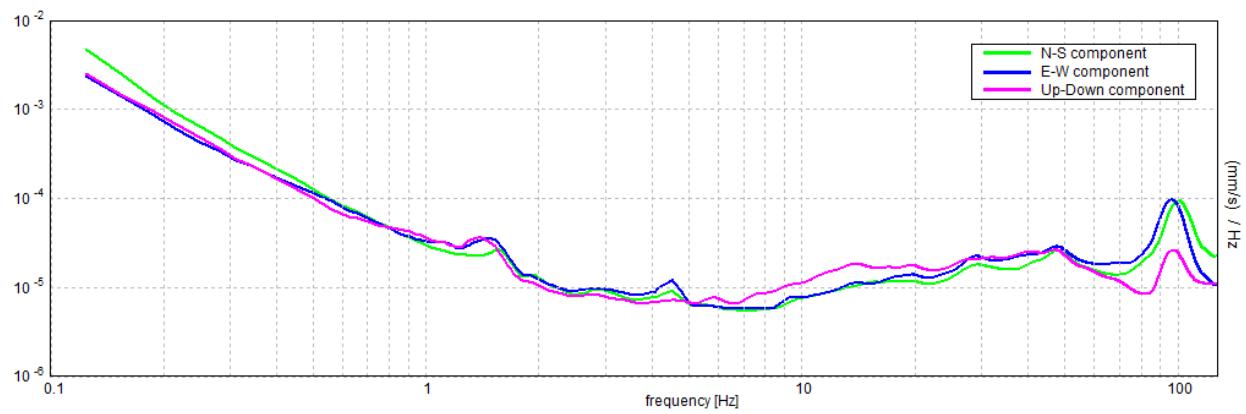

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 4.5 ± 1.68 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 4.5 ± 1.68 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$4.50 > 0.50$	OK	
$n_c(f_0) > 200$	$11700.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 217 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	1.438 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	7.0 Hz	OK	
$A_0 > 2$	$1.75 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.3744 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$1.68481 < 0.225$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.0924 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T19 (in relazione DIASIS 2012: Stazione HVSR – T17)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T19

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

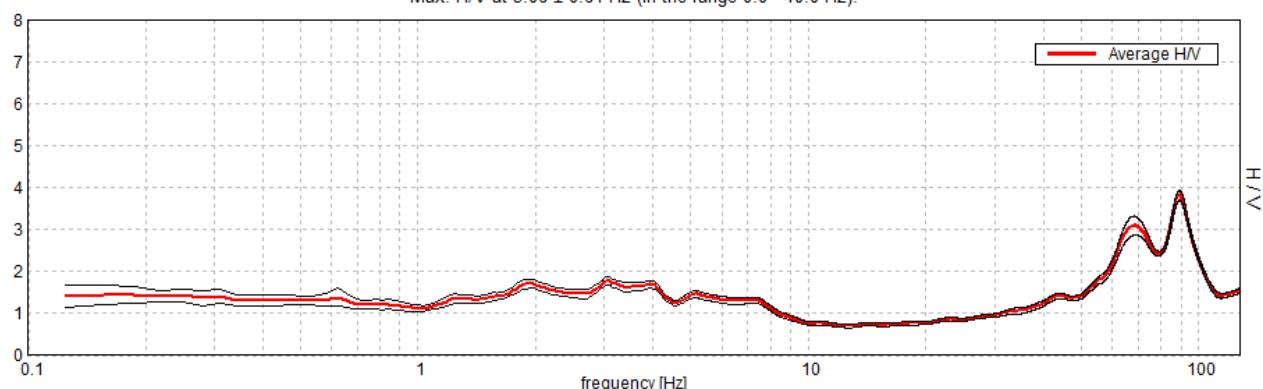
Start recording: 03/08/12 10:30:46 End recording: 03/08/12 11:16:46

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

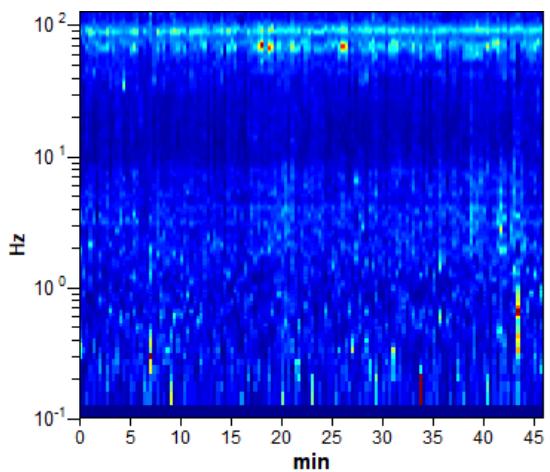
GPS data not available

Trace length: 0h46'00". Analysis performed on the entire trace.

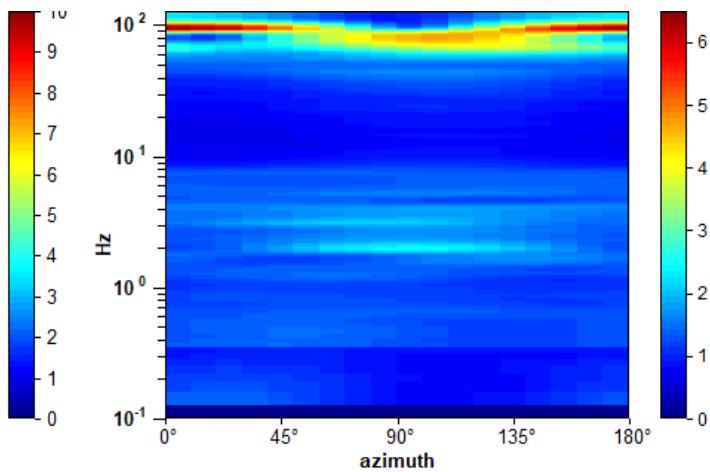
Sampling rate: 256 Hz

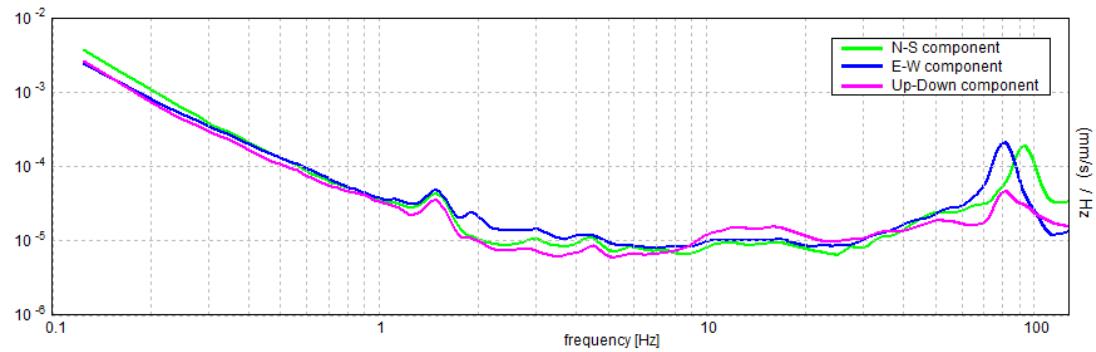

Window size: 20 s

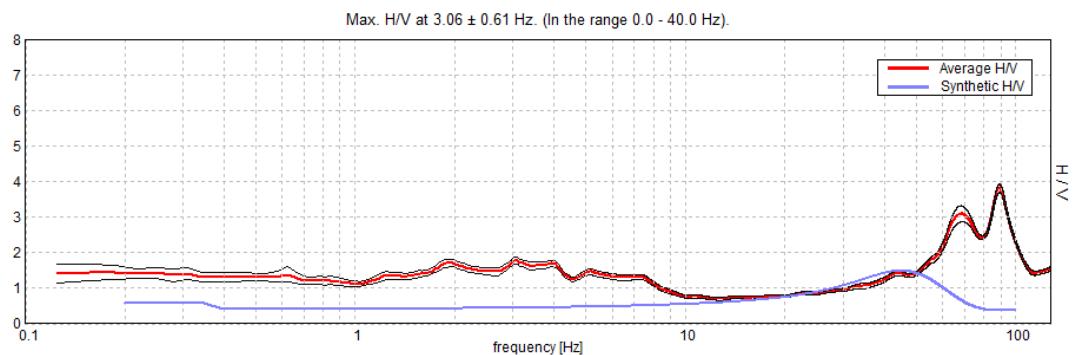
Smoothing type: Triangular window


Smoothing: 10%

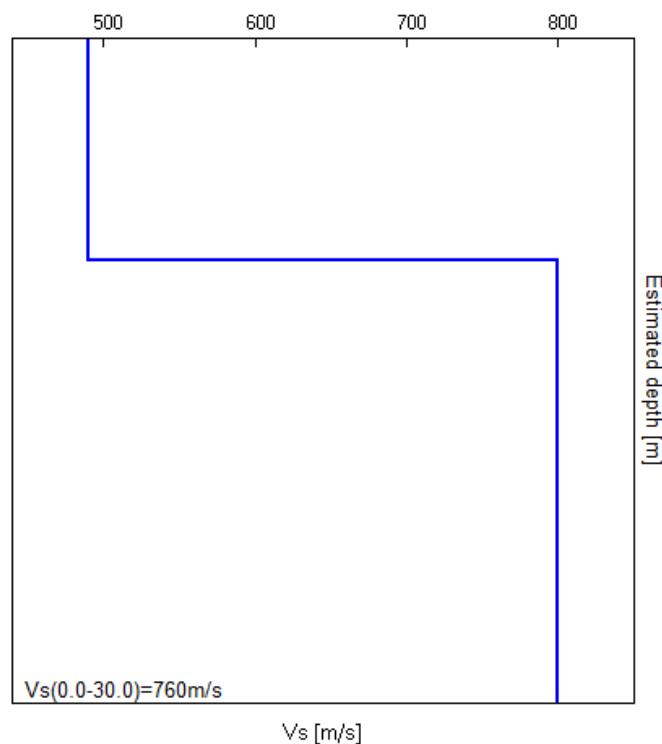
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 3.06 ± 0.61 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	V_s [m/s]	Poisson ratio
2.50	2.50	490	0.45
inf.	inf.	800	0.45

$V_s(0.0-30.0)=760$ m/s

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

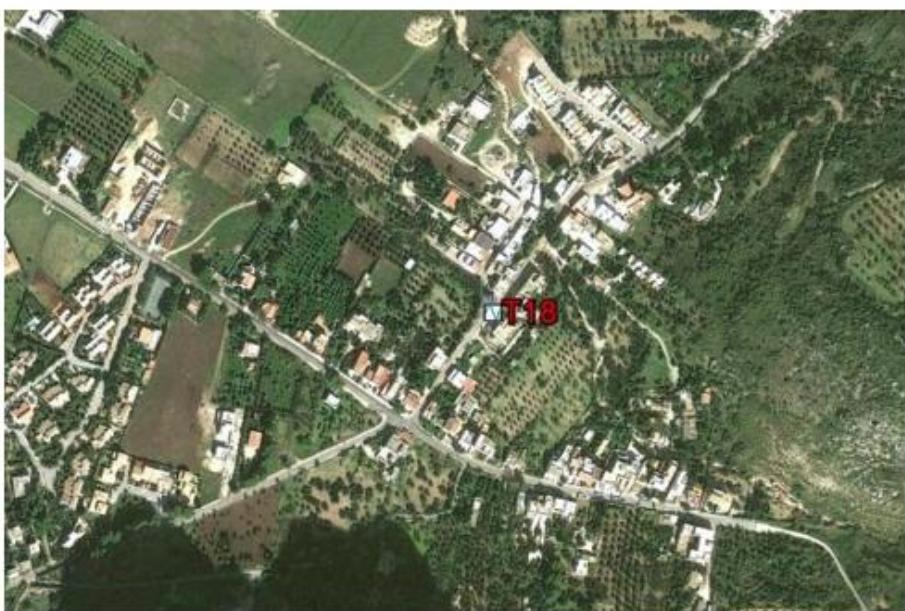
Max. H/V at 3.06 ± 0.61 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$3.06 > 0.50$	OK	
$n_c(f_0) > 200$	$8452.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 148 times	OK	

Criteria for a clear H/V peak


[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	9.063 Hz	OK	
$A_0 > 2$	$1.78 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.2007 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.61464 < 0.15313$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.0923 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T20 (in relazione DIASIS 2012: Stazione HVSR – T18)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T20

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

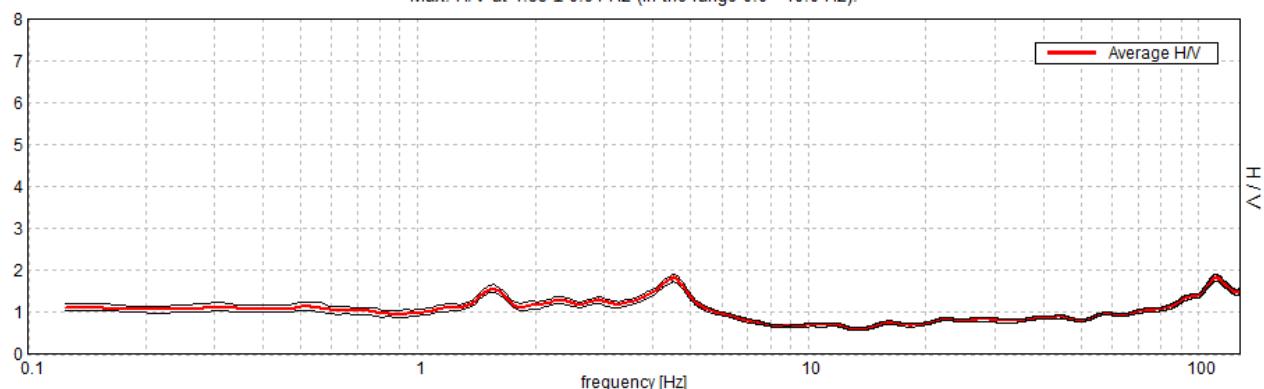
Start recording: 03/08/12 11:32:43 End recording: 03/08/12 12:18:43

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

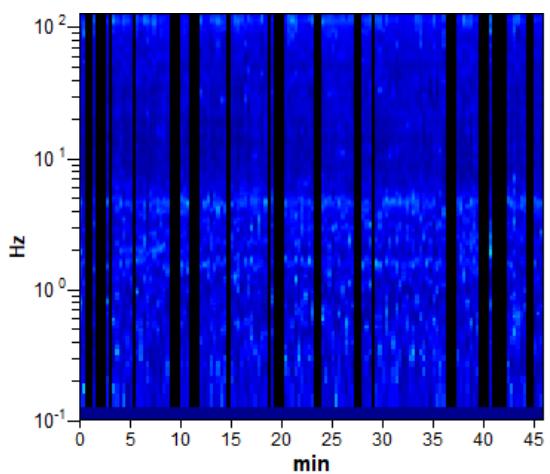
GPS data not available

Trace length: 0h46'00". Analyzed 75% trace (manual window selection)

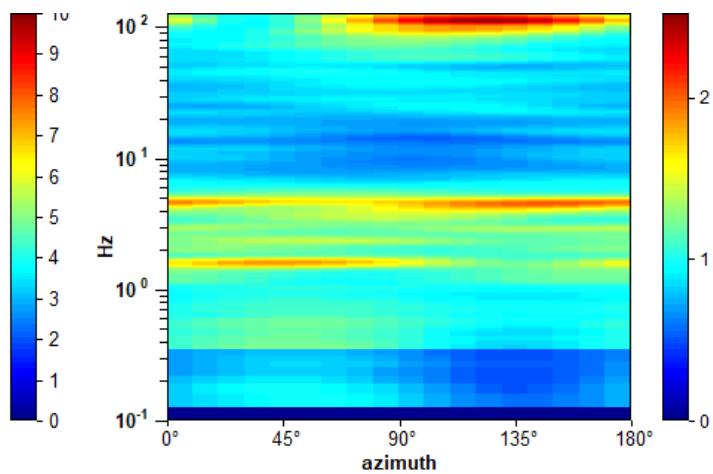
Sampling rate: 256 Hz

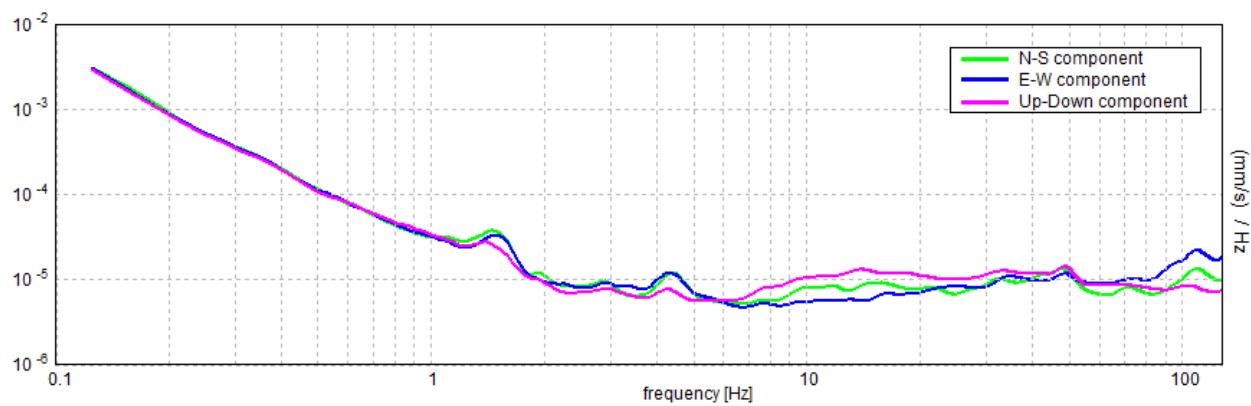

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 4.53 ± 0.94 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 4.53 ± 0.94 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$4.53 > 0.50$	OK	
$n_c(f_0) > 200$	$9334.4 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 218 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	6.406 Hz	OK	
$A_0 > 2$	$1.83 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.20676 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.93688 < 0.22656$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.0919 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T21 (in relazione DIASIS 2012: Stazione HVSR – T19)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T21

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

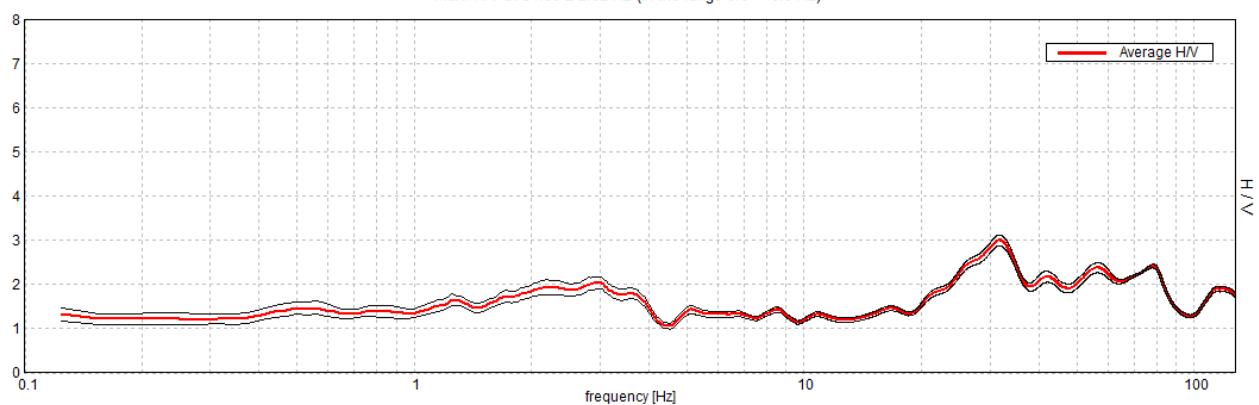
Start recording: 03/08/12 11:22:11 End recording: 03/08/12 12:08:11

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

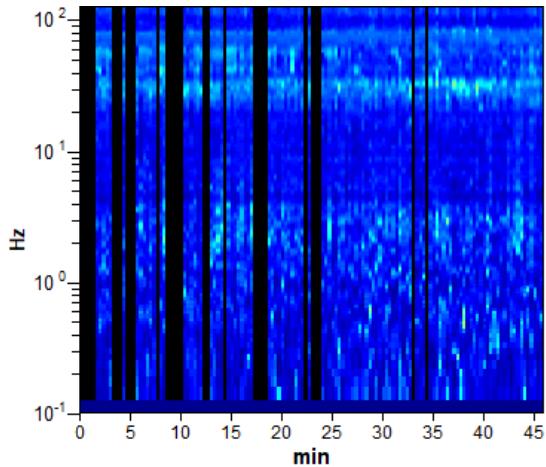
GPS data not available

Trace length: 0h46'00". Analyzed 78% trace (manual window selection)

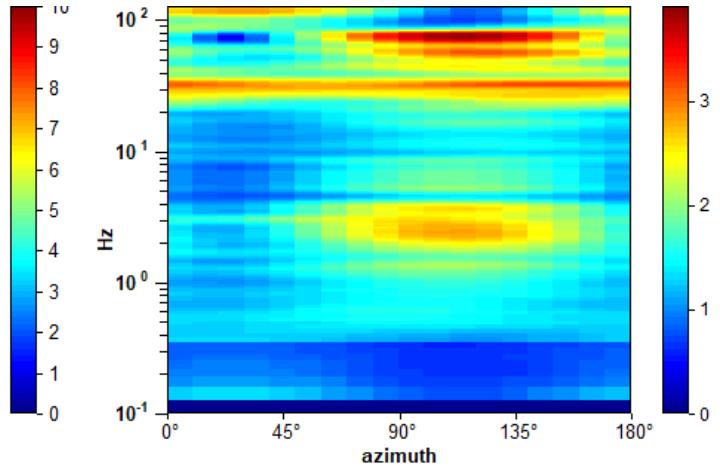
Sampling rate: 256 Hz

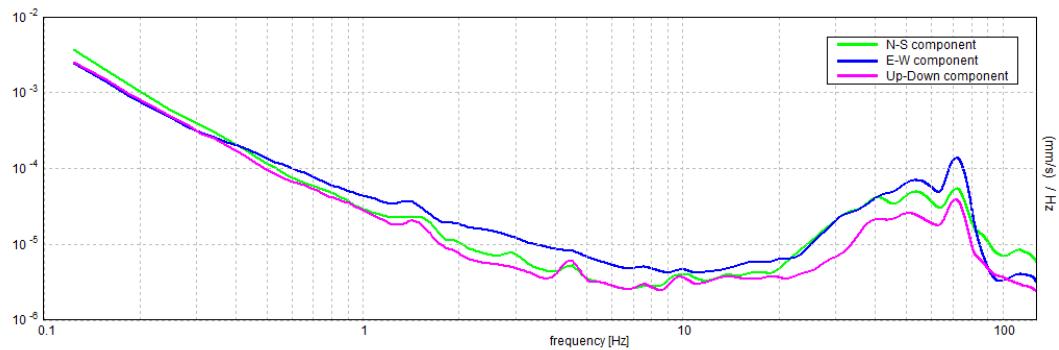

Window size: 20 s

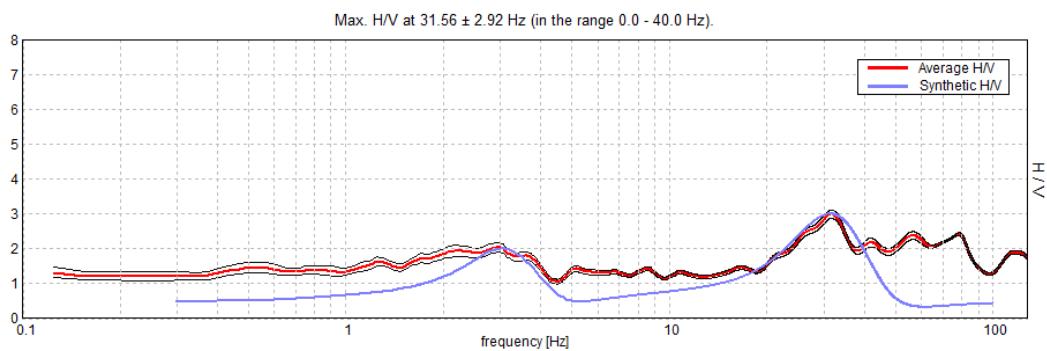
Smoothing type: Triangular window


Smoothing: 10%

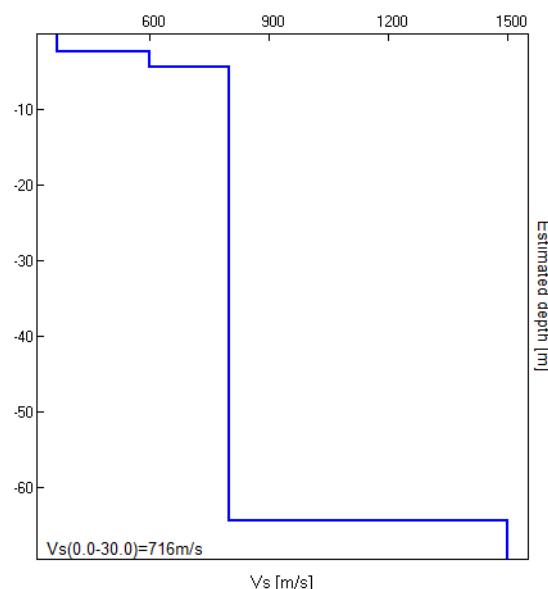
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 31.56 ± 2.92 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.40	2.40	367	0.45
4.40	2.00	600	0.35
64.40	60.00	800	0.35
inf.	inf.	1500	0.42

$$\text{Vs}(0.0-30.0) = 716 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 31.56 ± 2.92 Hz (in the range 0.0 - 40.0 Hz).

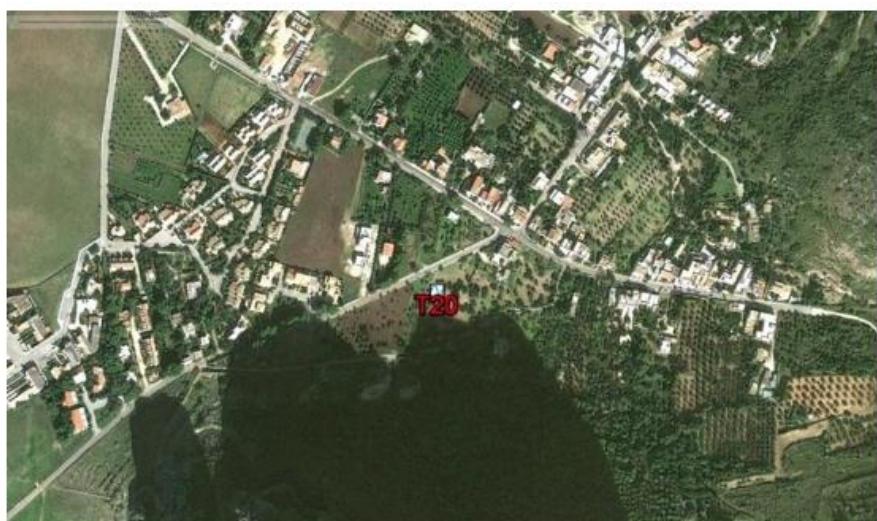
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$31.56 > 0.50$	OK	
$n_c(f_0) > 200$	$68175.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 1516 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	19.844 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	89.063 Hz	OK	
$A_0 > 2$	$3.00 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.09259 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$2.92229 < 1.57813$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1188 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T22 (in relazione DIASIS 2012: Stazione HVSR – T20)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T22

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

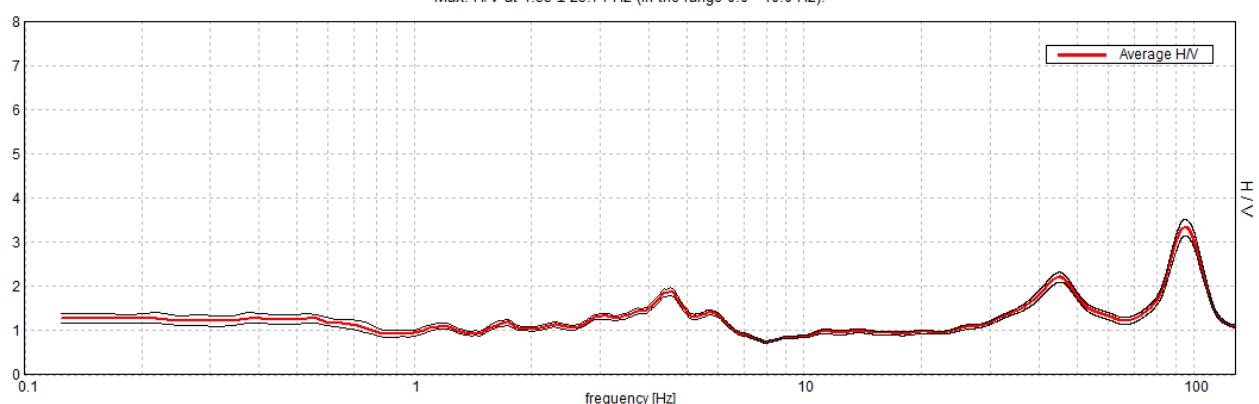
Start recording: 03/08/12 09:23:37 End recording: 03/08/12 10:09:37

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

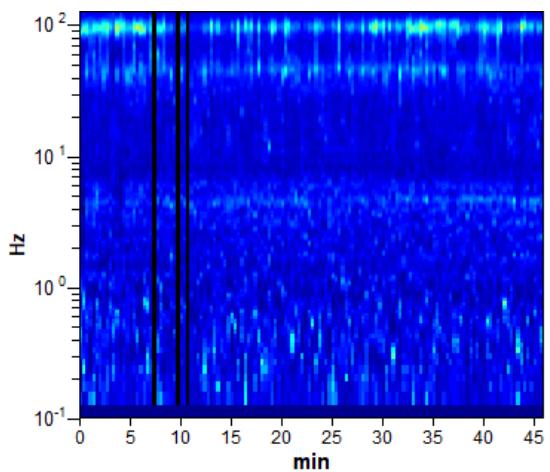
GPS data not available

Trace length: 0h46'00". Analyzed 98% trace (manual window selection)

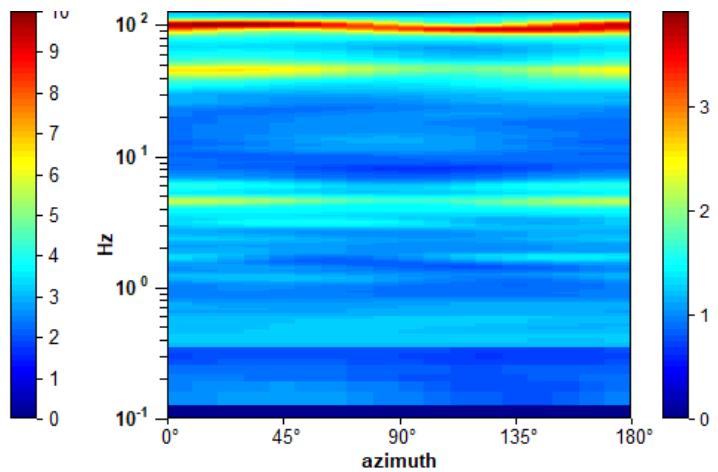
Sampling rate: 256 Hz

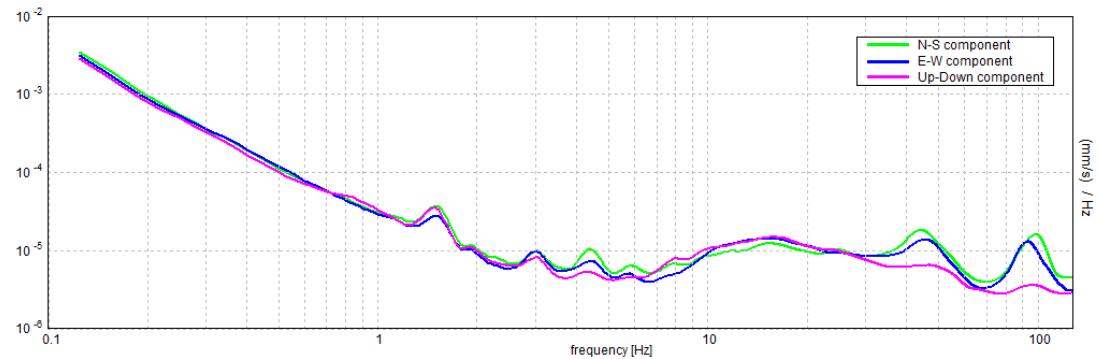

Window size: 20 s

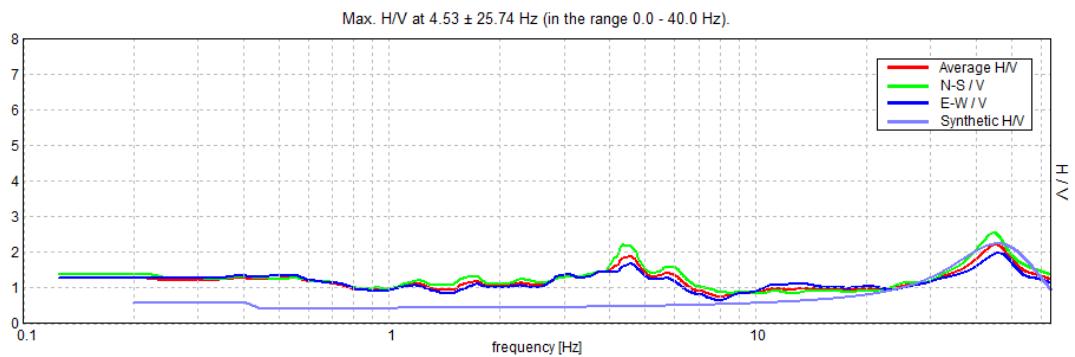
Smoothing type: Triangular window


Smoothing: 10%

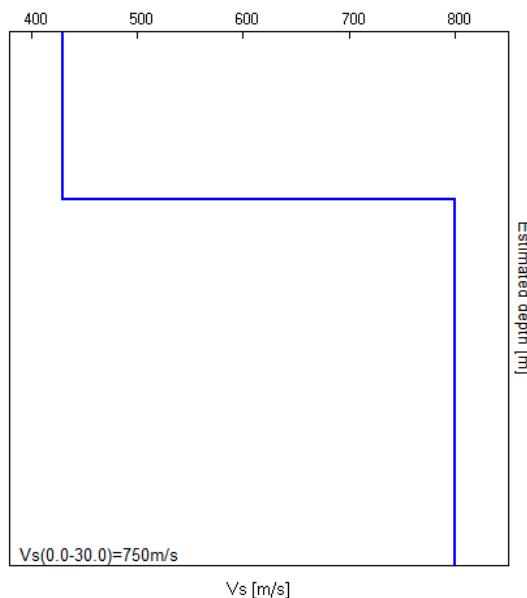
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 4.53 ± 25.74 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.30	2.30	430	0.42
inf.	inf.	800	0.42

$$Vs(0.0-30.0)=750\text{m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 4.53 ± 25.74 Hz (in the range 0.0 - 40.0 Hz).

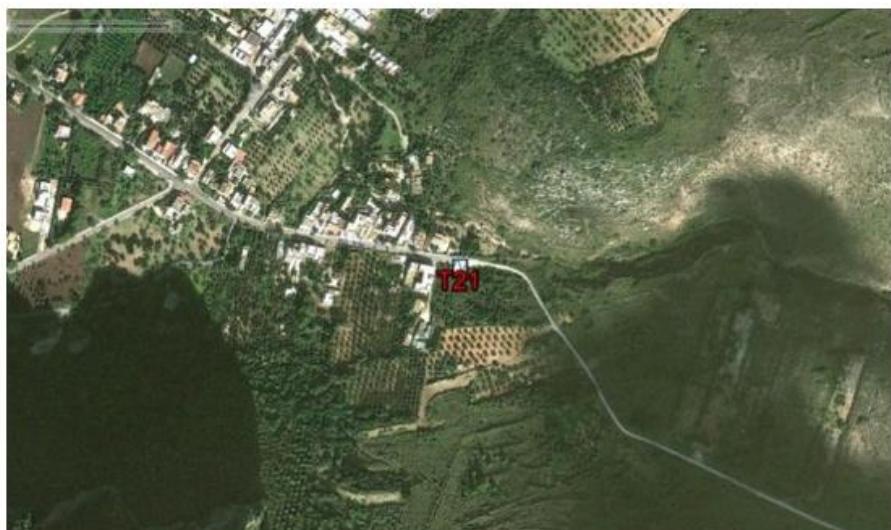
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$4.53 > 0.50$	OK	
$n_c(f_0) > 200$	$12234.4 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 218 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	1.469 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	6.813 Hz	OK	
$A_0 > 2$	$1.88 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 5.67994 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$25.73721 < 0.22656$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.0879 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MACARI T23 (in relazione DIASIS 2012: Stazione HVSR – T21)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

MACARI T23

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

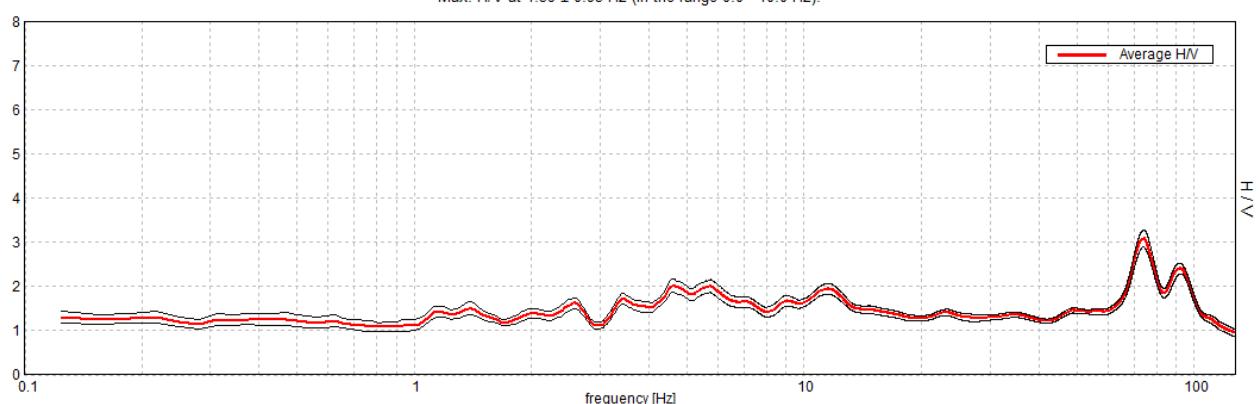
Start recording: 03/08/12 10:23:33 End recording: 03/08/12 11:09:32

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

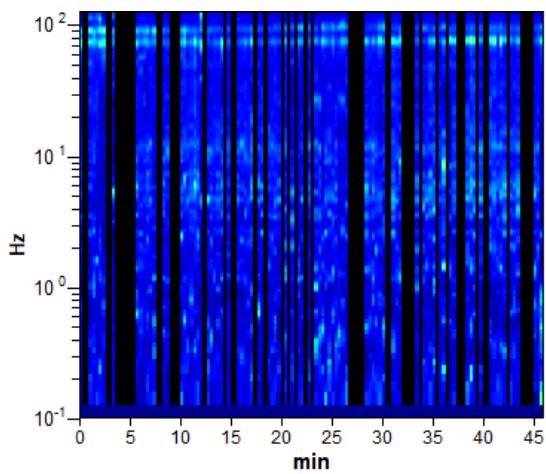
GPS data not available

Trace length: 0h46'00". Analyzed 63% trace (manual window selection)

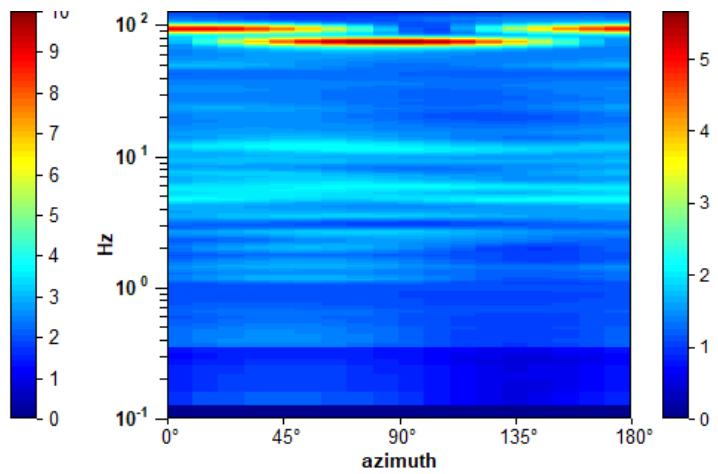
Sampling rate: 256 Hz

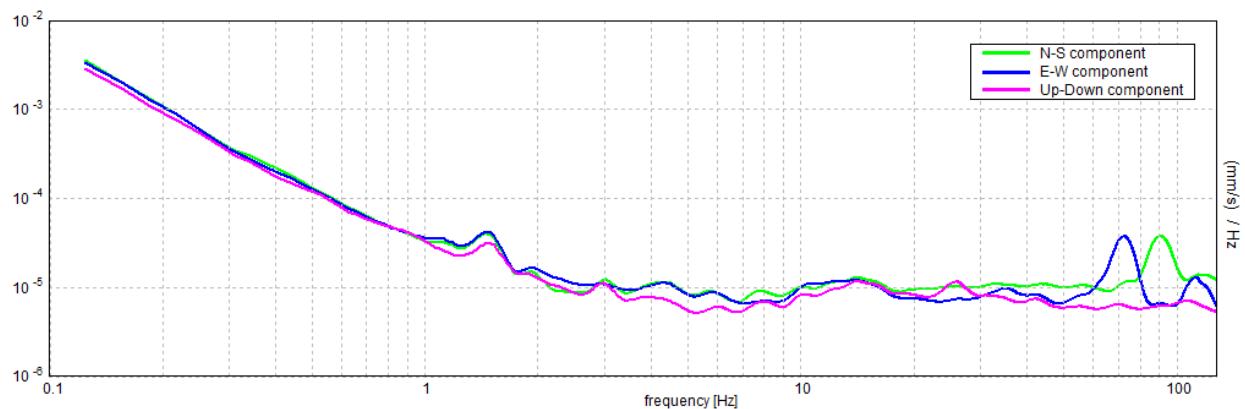

Window size: 20 s

Smoothing type: Triangular window

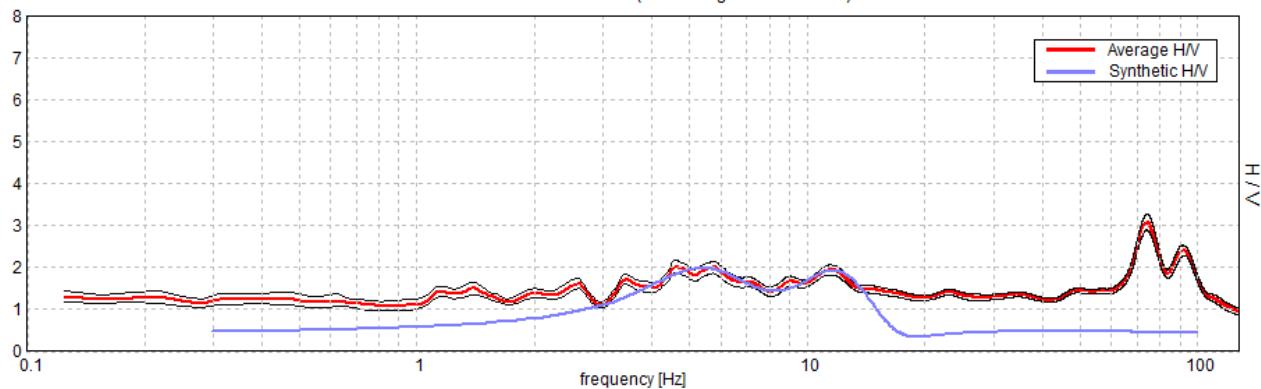

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

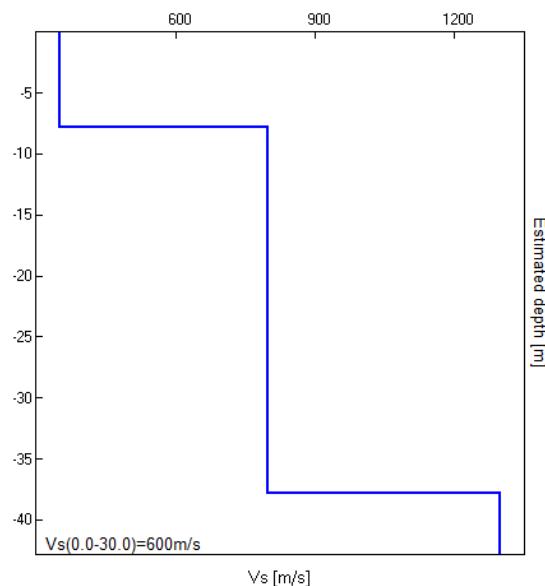

Max. H/V at 4.59 ± 0.93 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V



SINGLE COMPONENT SPECTRA


EXPERIMENTAL vs. SYNTHETIC H/V

Max. H/V at 4.59 ± 0.93 Hz (in the range 0.0 - 40.0 Hz).

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
7.80	7.80	350	0.35
37.80	30.00	800	0.35
inf.	inf.	1300	0.35

$Vs(0.0-30.0)=600$ m/s

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 4.59 ± 0.93 Hz (in the range 0.0 - 40.0 Hz).

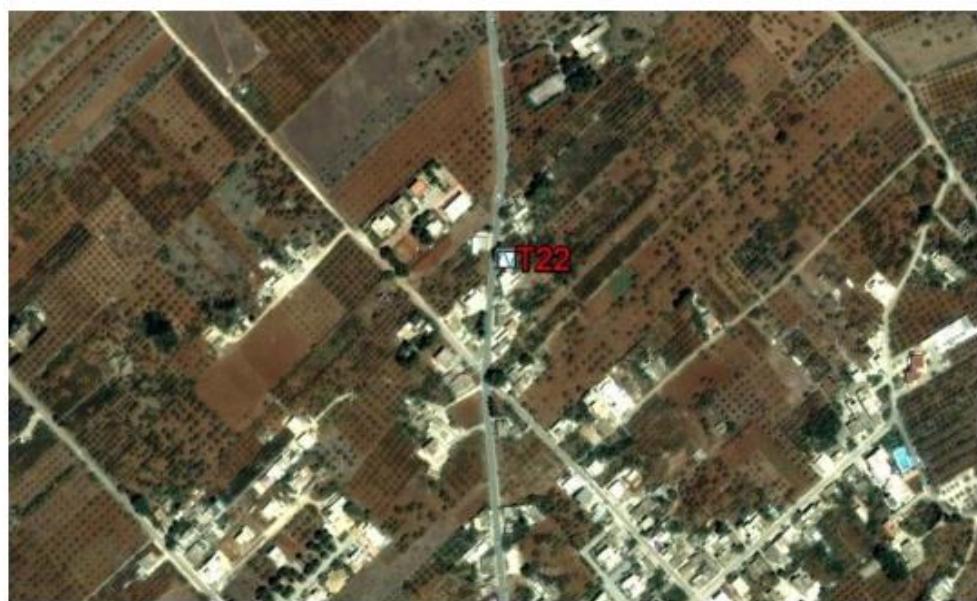
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$4.59 > 0.50$	OK	
$n_c(f_0) > 200$	$7993.1 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 222 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$2.01 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.2031 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.93297 < 0.22969$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.152 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T24 (in relazione DIASIS 2012: Stazione HVSR – T22)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

CASTELLUZZO T24

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

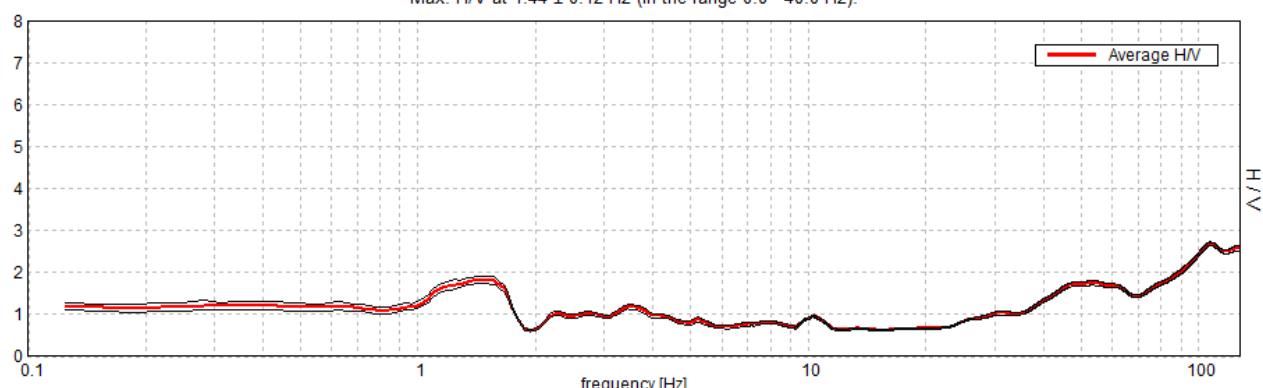
Start recording: 02/08/12 15:26:55 End recording: 02/08/12 16:12:55

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

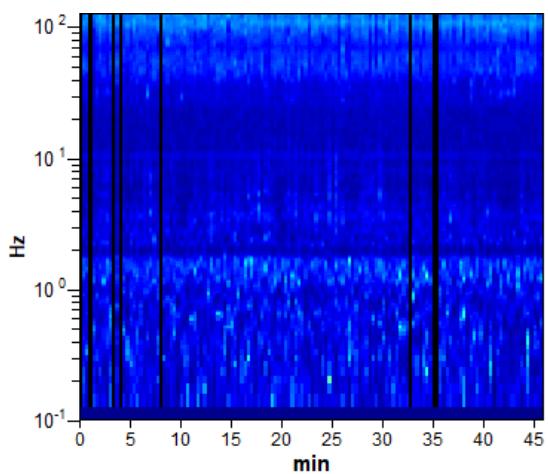
GPS data not available

Trace length: 0h46'00". Analyzed 94% trace (manual window selection)

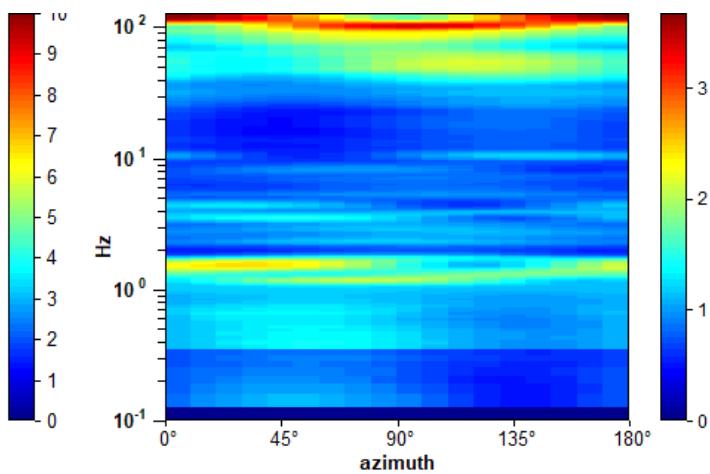
Sampling rate: 256 Hz

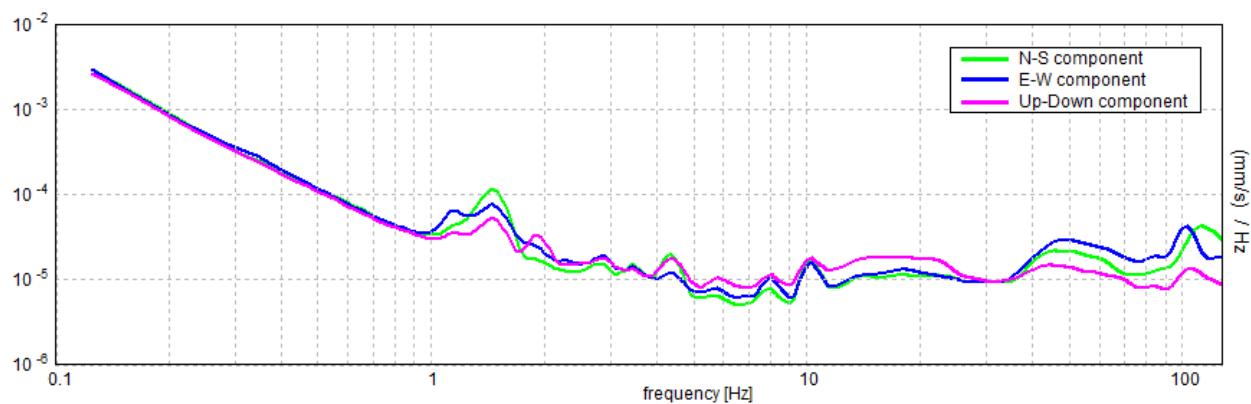

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.44 ± 0.12 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.44 ± 0.12 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.44 > 0.50$	OK	
$n_c(f_0) > 200$	$3737.5 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 70 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	1.813 Hz	OK	
$A_0 > 2$	$1.82 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.08012 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.11518 < 0.14375$	OK	
$\sigma_A(f_0) < \theta(f_0)$	$0.0849 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T25 (in relazione DIASIS 2012: Stazione HVSR – T23)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

CASTELLUZZO T25

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

Start recording: 02/08/12 15:40:56 End recording: 02/08/12 16:26:56

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

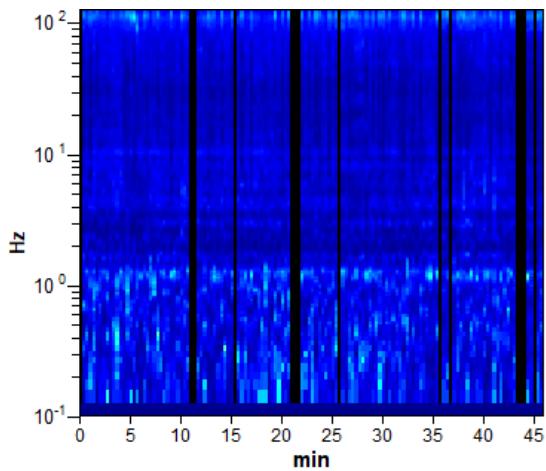
GPS data not available

Trace length: 0h46'00". Analyzed 90% trace (manual window selection)

Sampling rate: 256 Hz

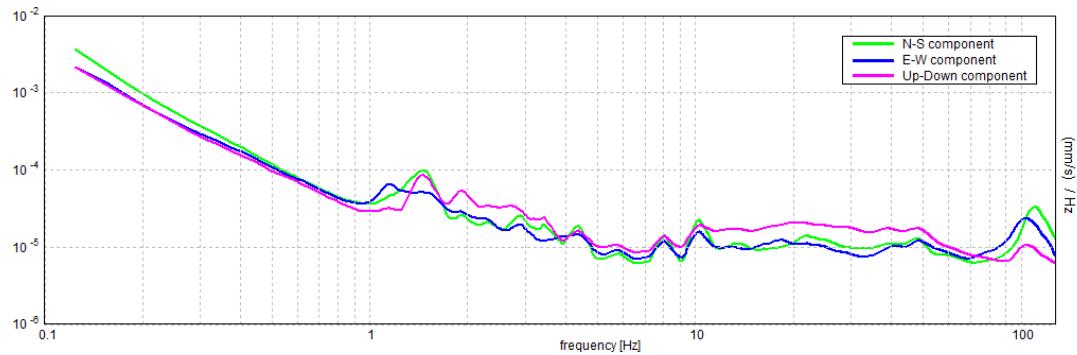
Window size: 20 s

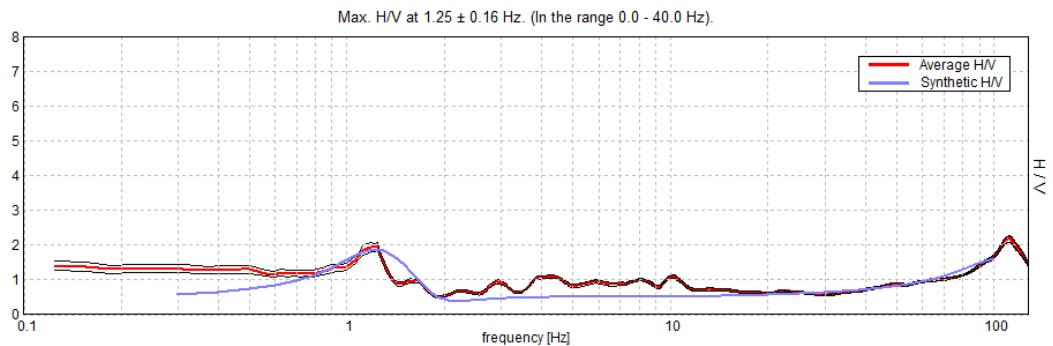
Smoothing type: Triangular window


Smoothing: 10%

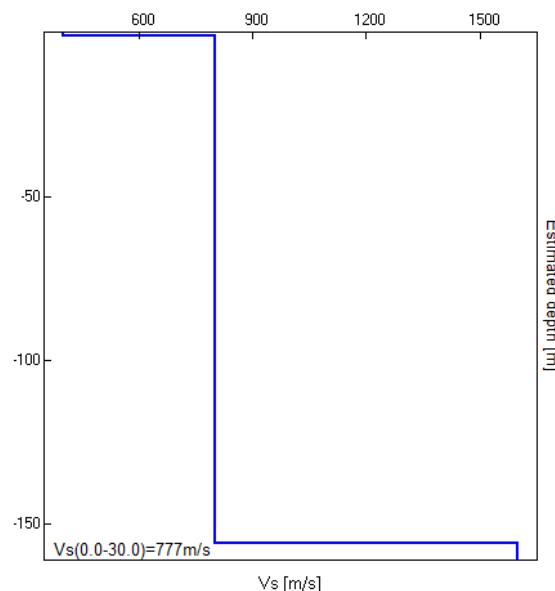
HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.25 ± 0.16 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.90	0.90	400	0.35
155.90	155.00	800	0.35
inf.	inf.	1600	0.42

$$Vs(0.0-30.0) = 777 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.25 ± 0.16 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.25 > 0.50$	OK	
$n_c(f_0) > 200$	$3100.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 61 times	OK	

Criteria for a clear H/V peak


[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	1.406 Hz	OK	
$A_0 > 2$	$1.96 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.12881 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.16102 < 0.125$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1189 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T26 (in relazione DIASIS 2012: Stazione HVSR – T24)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

CASTELLUZZO T26

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

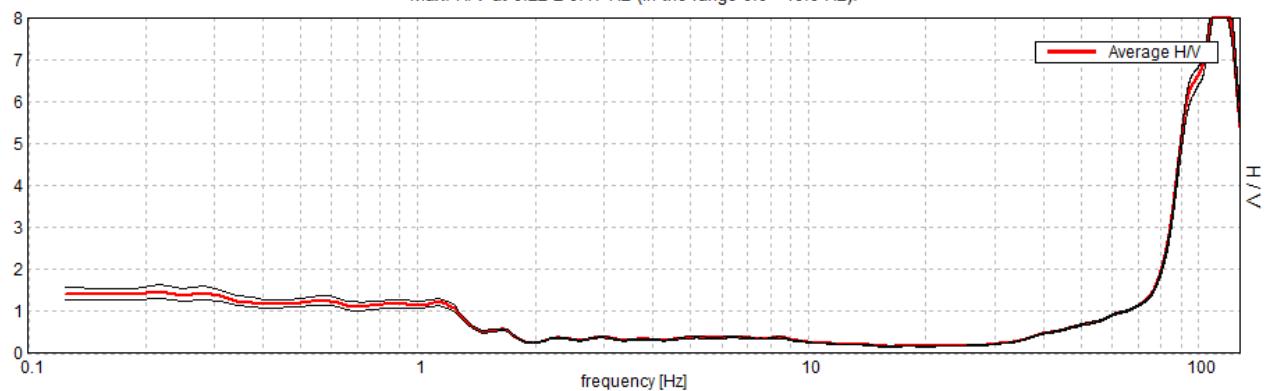
Start recording: 02/08/12 14:43:21 End recording: 02/08/12 15:29:21

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

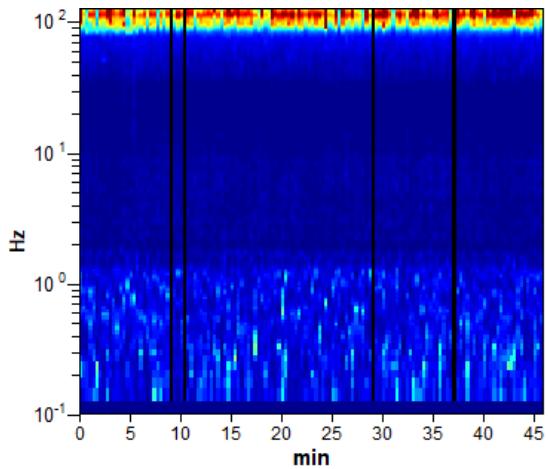
GPS data not available

Trace length: 0h46'00". Analyzed 97% trace (manual window selection)

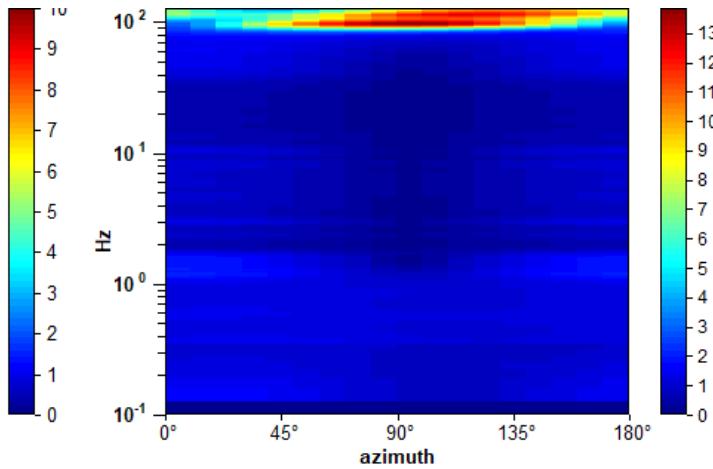
Sampling rate: 256 Hz

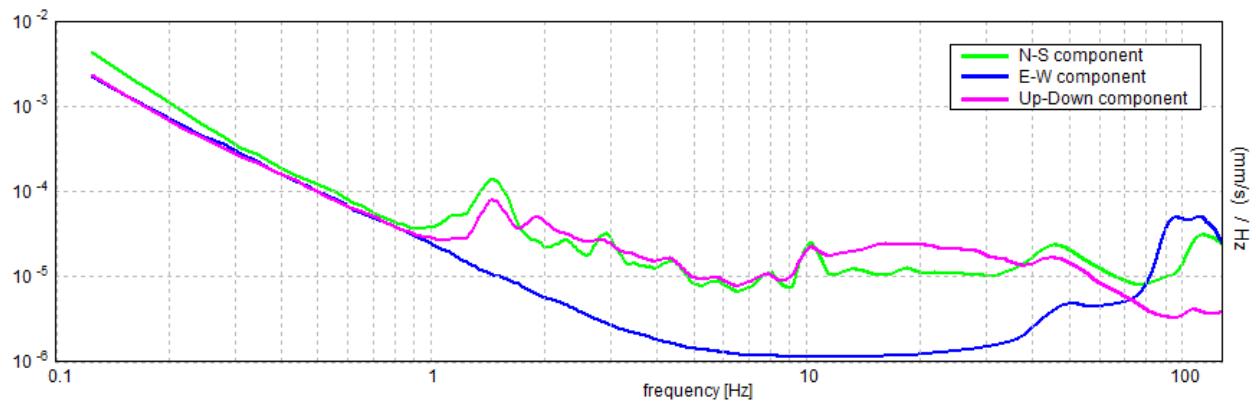

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 0.22 ± 0.17 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 0.22 ± 0.17 Hz (in the range 0.0 - 40.0 Hz).

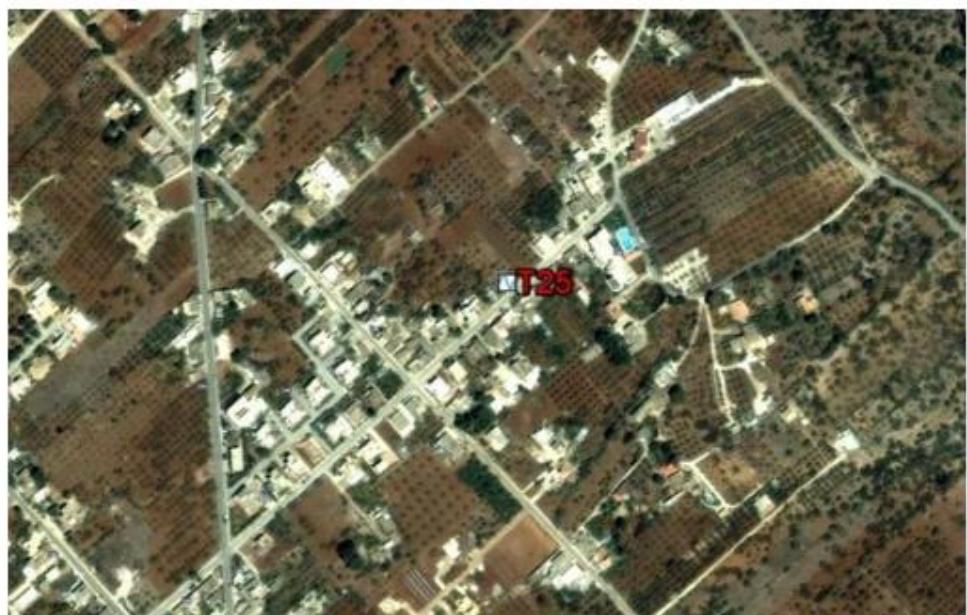
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$0.22 > 0.50$		NO
$n_c(f_0) > 200$	$586.3 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 12 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$	0.094 Hz	OK	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$1.47 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.78712 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.17218 < 0.04375$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1649 < 2.5$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T27 (in relazione DIASIS 2012: Stazione HVSR – T25)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

CASTELLUZZO T27

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

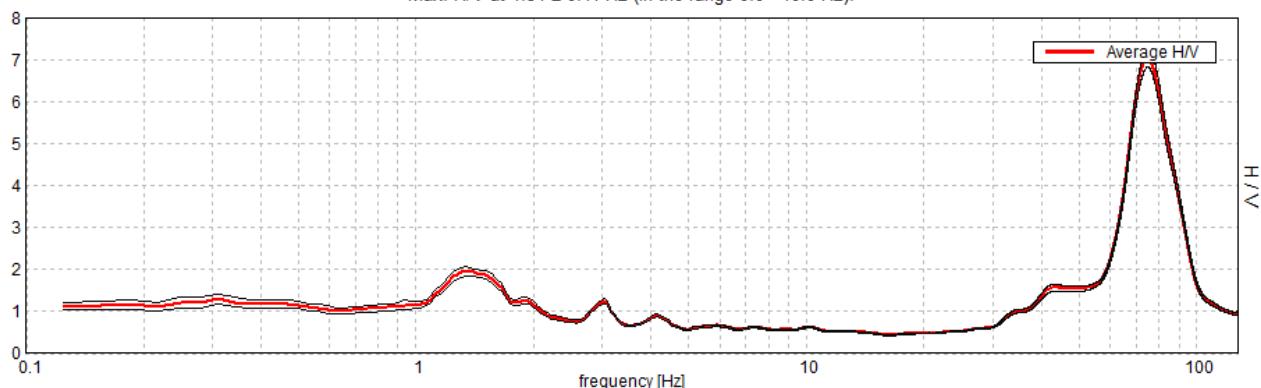
Start recording: 02/08/12 18:30:18 End recording: 02/08/12 19:16:18

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

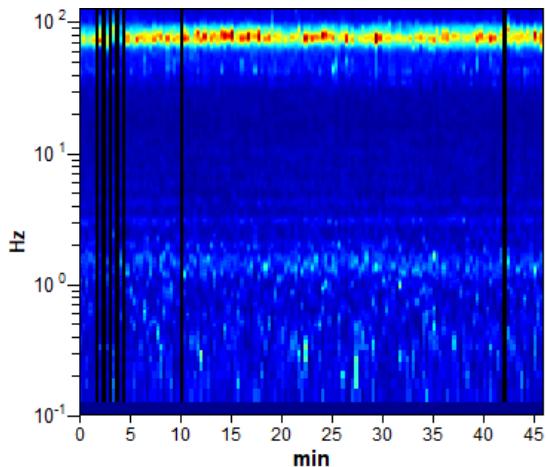
GPS data not available

Trace length: 0h46'00". Analyzed 95% trace (manual window selection)

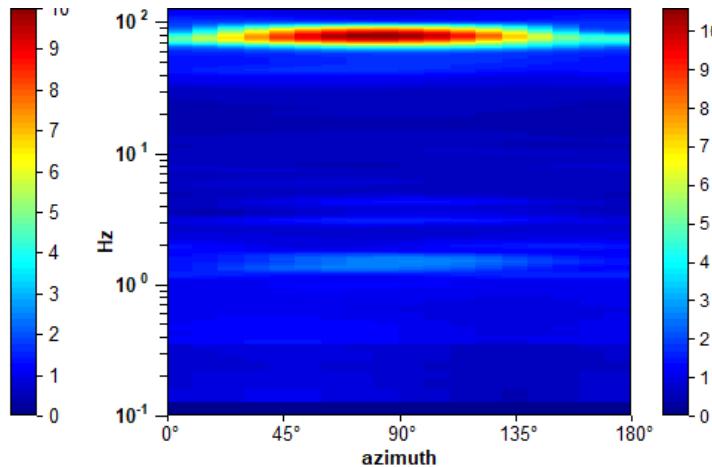
Sampling rate: 256 Hz

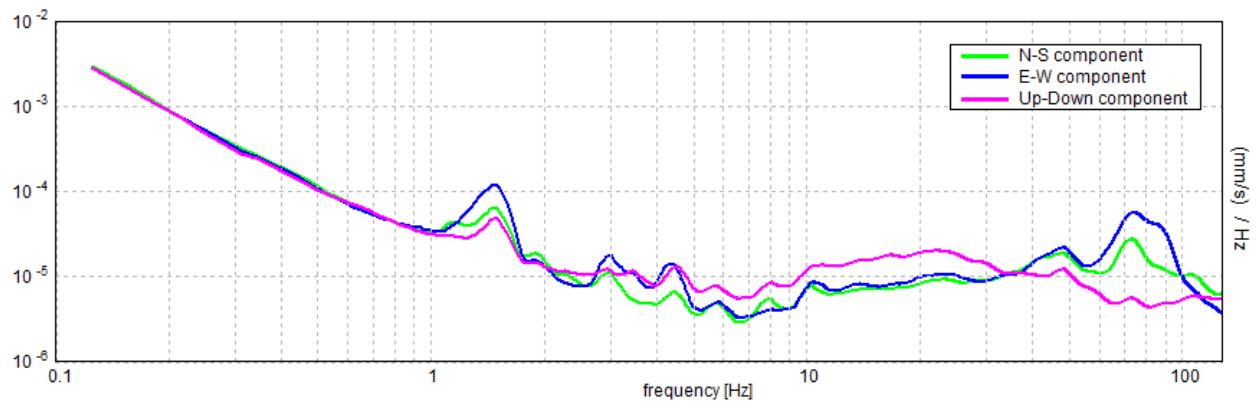

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.34 ± 0.11 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.34 ± 0.11 Hz (in the range 0.0 - 40.0 Hz).

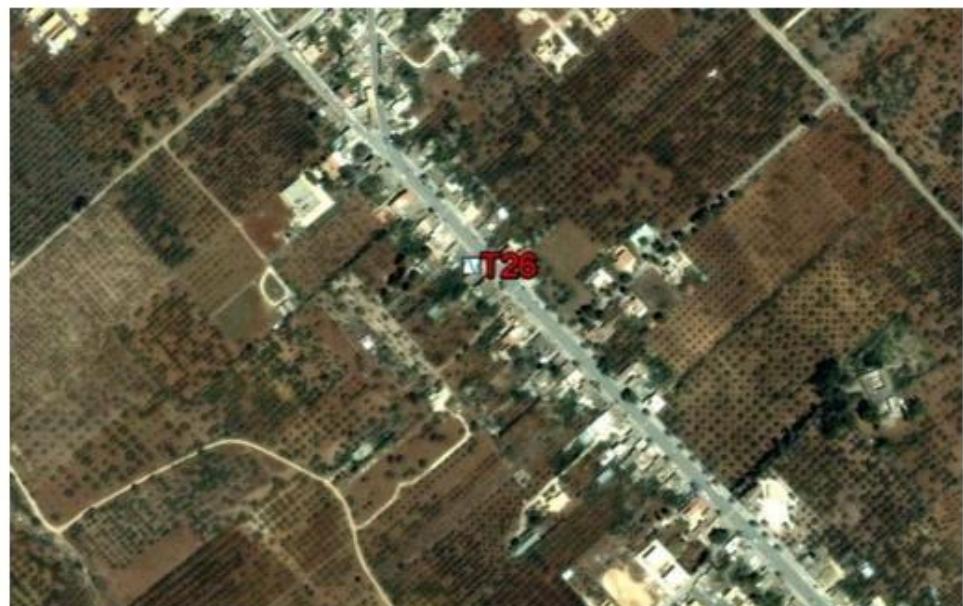
Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.34 > 0.50$	OK	
$n_c(f_0) > 200$	$3520.6 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 66 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]


Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	2.125 Hz	OK	
$A_0 > 2$	$1.96 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.08171 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.10979 < 0.13438$	OK	
$\sigma_A(f_0) < \theta(f_0)$	$0.1107 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T28 (in relazione DIASIS 2012: Stazione HVSR – T26)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

CASTELLUZZO T28

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

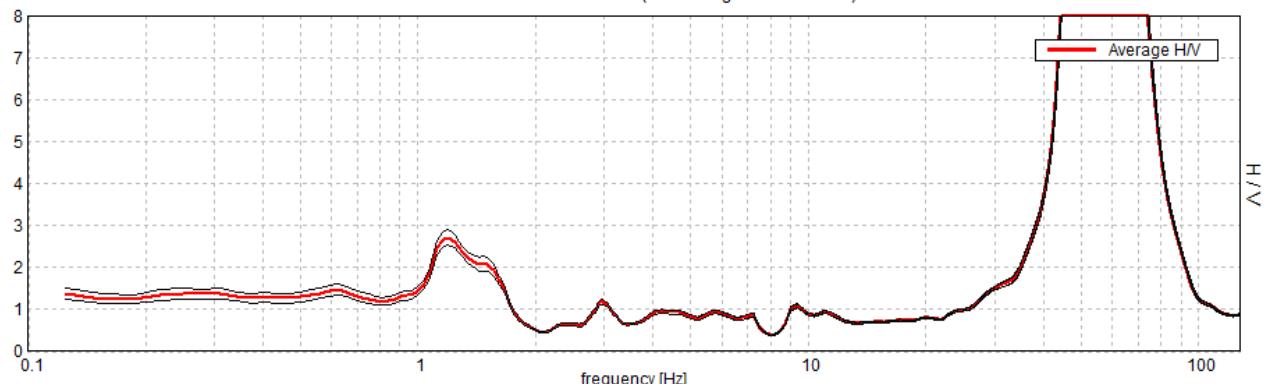
Start recording: 02/08/12 16:50:53 End recording: 02/08/12 17:36:53

Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN

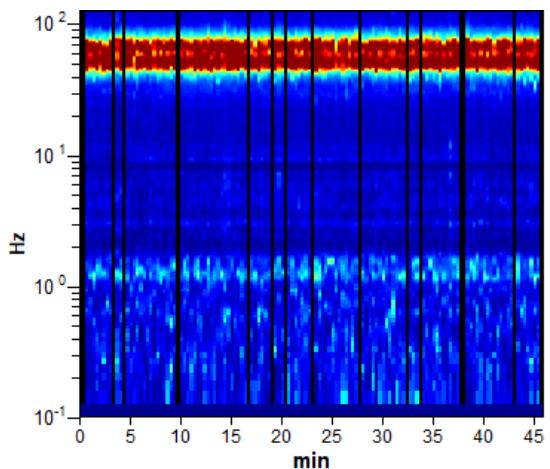
GPS data not available

Trace length: 0h46'00". Analyzed 88% trace (manual window selection)

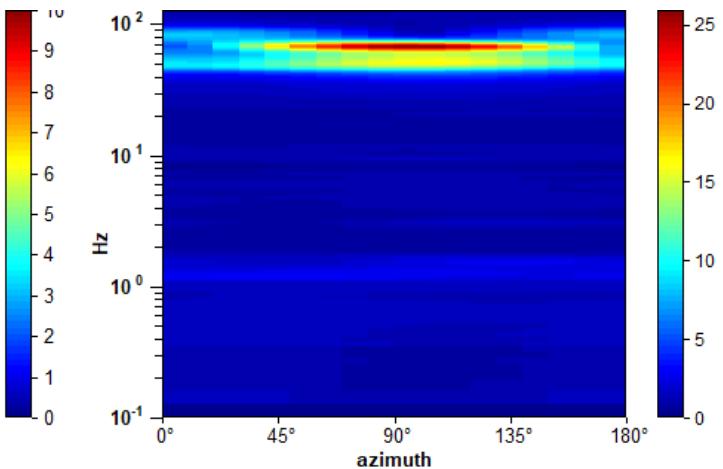
Sampling rate: 256 Hz

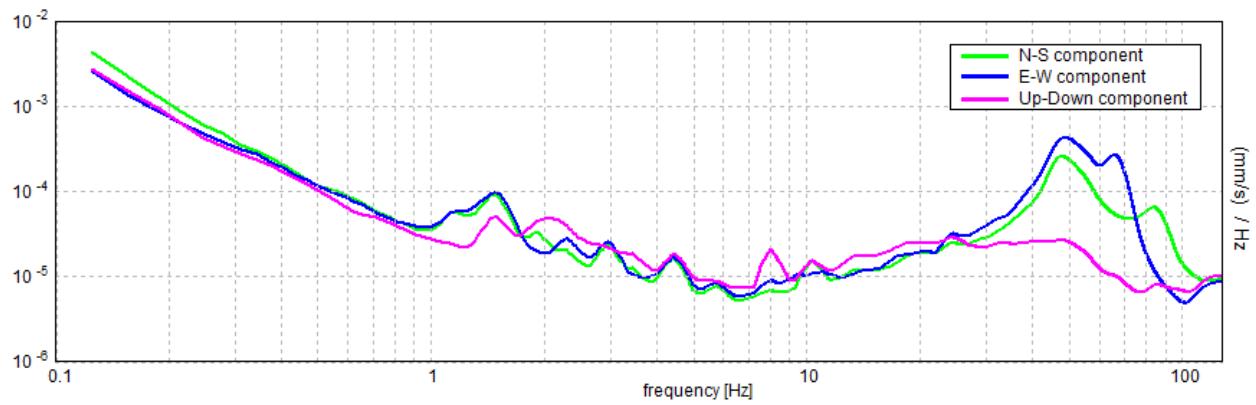

Window size: 20 s

Smoothing type: Triangular window

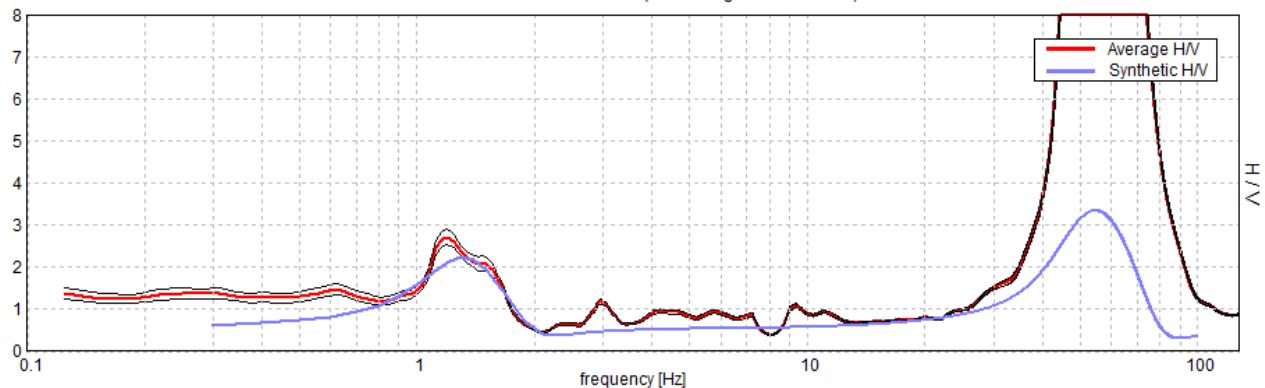

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

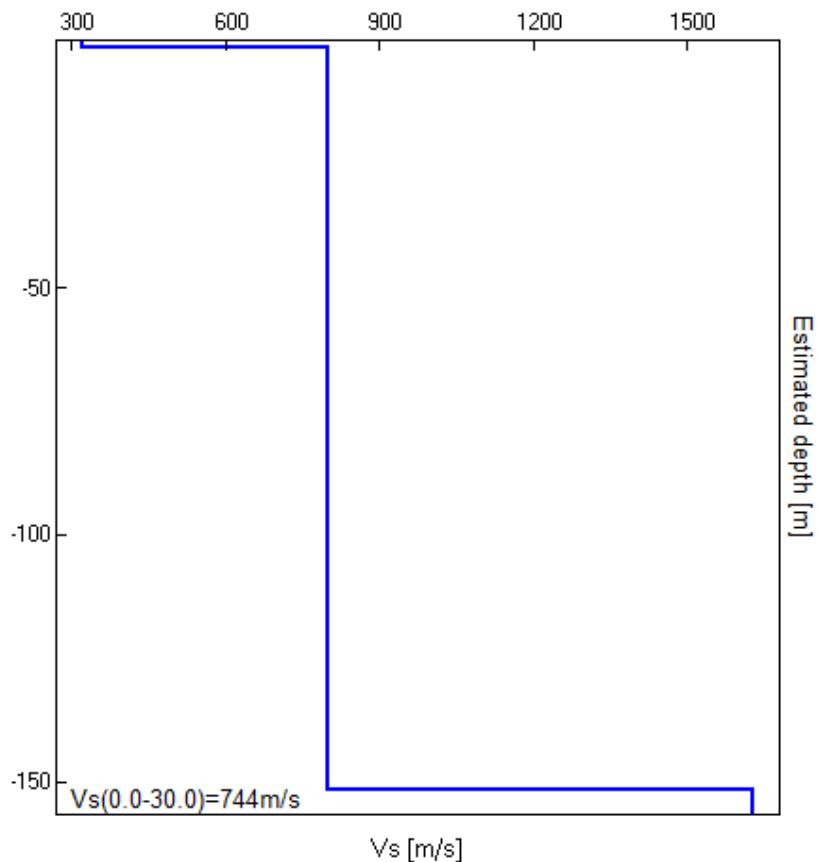

Max. H/V at 39.97 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V



SINGLE COMPONENT SPECTRA


EXPERIMENTAL vs. SYNTHETIC H/V

Max. H/V at 39.97 ± 0.03 Hz. (In the range 0.0 - 40.0 Hz).

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.50	1.50	320	0.35
151.50	150.00	800	0.35
inf.	inf.	1630	0.35

$$Vs(0.0-30.0) = 744 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 39.97 ± 0.03 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$39.97 > 0.50$	OK	
$n_c(f_0) > 200$	$97523.8 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 1920 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	34.063 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	94.094 Hz	OK	
$A_0 > 2$	$3.62 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.00078 < 0.05$	OK	
$\sigma_f < \varepsilon(f_0)$	$0.03125 < 1.99844$	OK	
$\sigma_A(f_0) < \theta(f_0)$	$0.1101 < 1.58$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T29 (in relazione DIASIS 2012: Stazione HVSR – T27)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

CASTELLUZZO T29

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

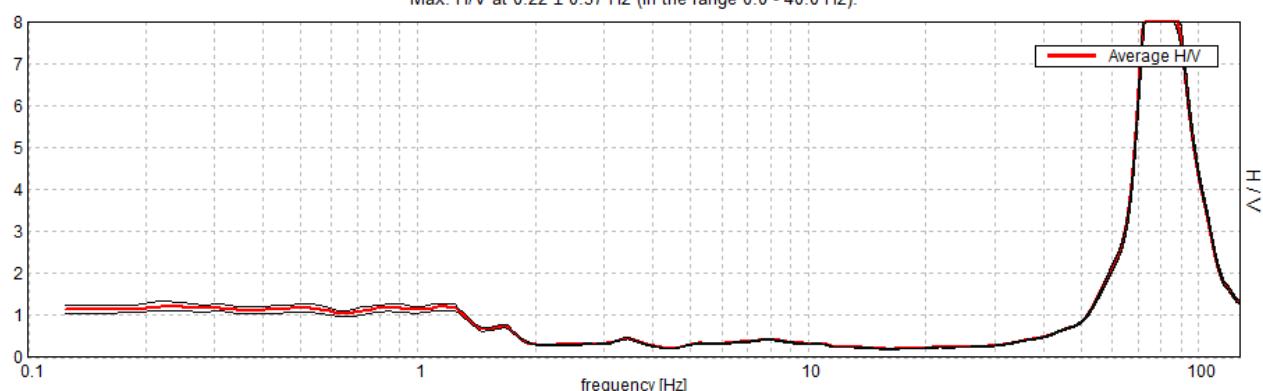
Start recording: 02/08/12 17:32:49 End recording: 02/08/12 18:18:48

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

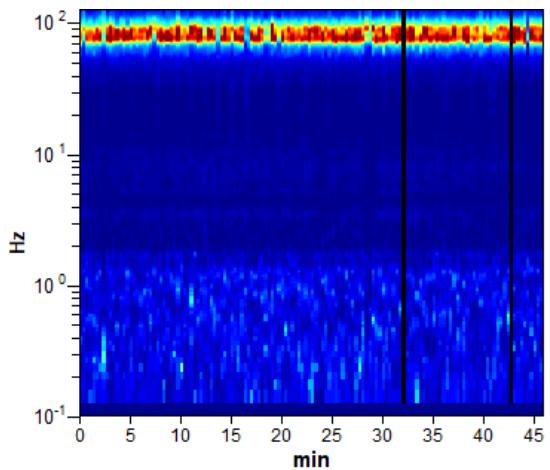
GPS data not available

Trace length: 0h46'00". Analyzed 99% trace (manual window selection)

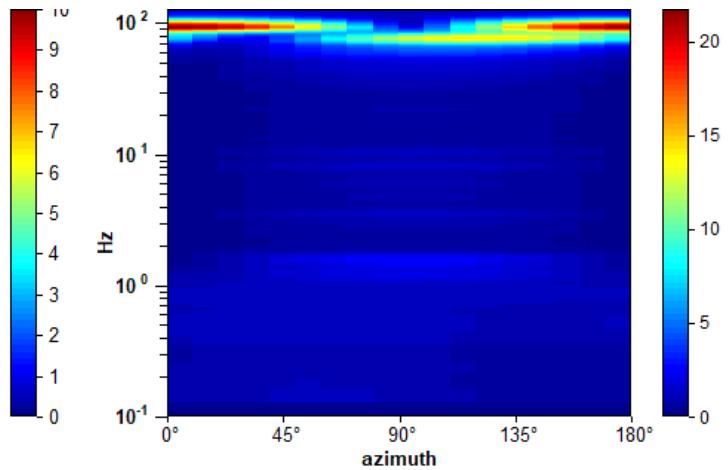
Sampling rate: 256 Hz

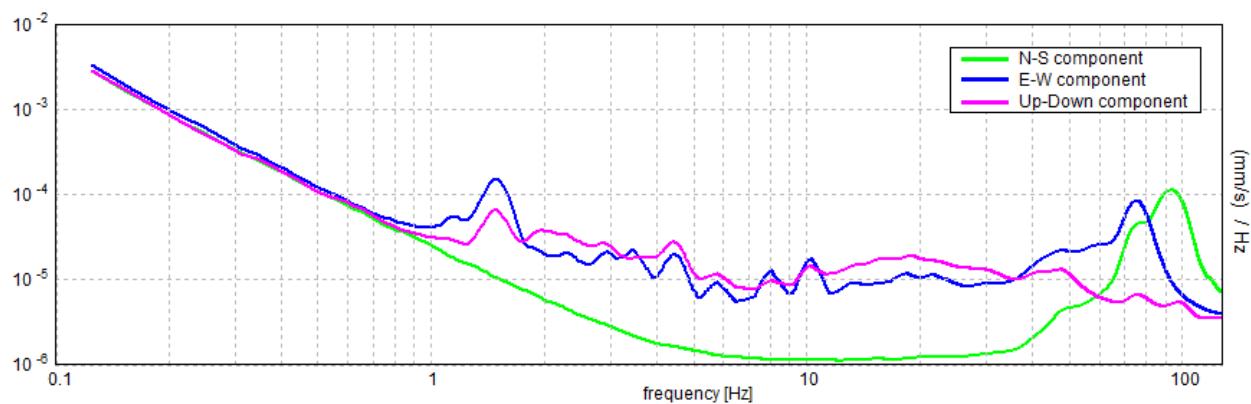

Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 0.22 ± 0.37 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 0.22 ± 0.37 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$0.22 > 0.50$		NO
$n_c(f_0) > 200$	$595.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 12 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$	0.094 Hz	OK	
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO
$A_0 > 2$	$1.22 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 1.68653 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.36893 < 0.04375$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1163 < 2.5$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T30 (in relazione DIASIS 2012: Stazione HVSR – T28)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

CASTELLUZZO T30

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

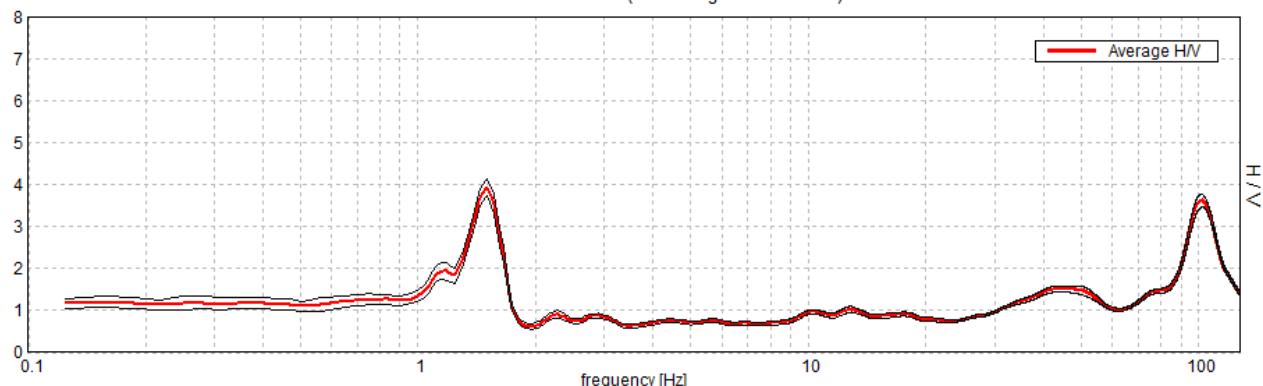
Start recording: 02/08/12 08:46:25 End recording: 02/08/12 09:32:25

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

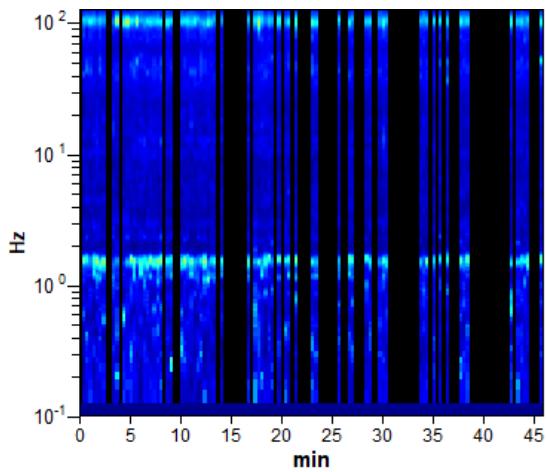
GPS data not available

Trace length: 0h46'00". Analyzed 51% trace (manual window selection)

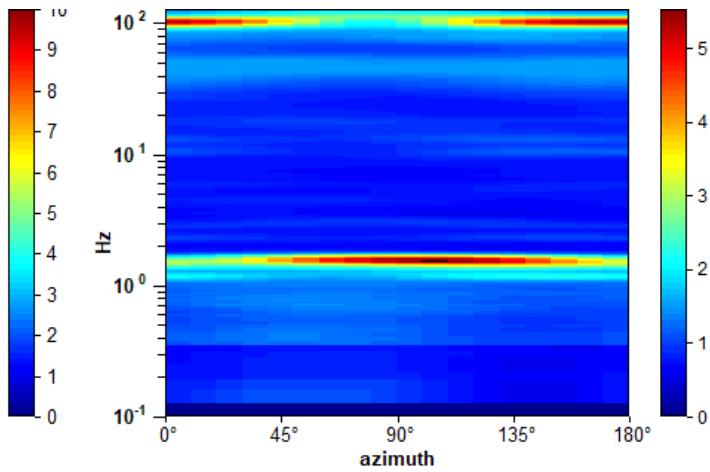
Sampling rate: 256 Hz

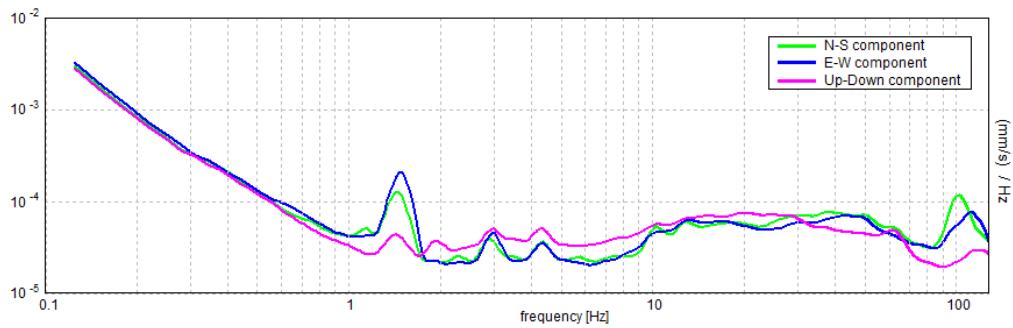

Window size: 20 s

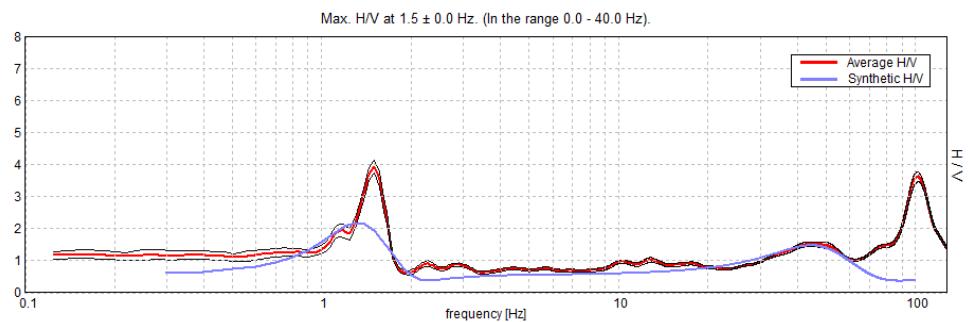
Smoothing type: Triangular window


Smoothing: 10%

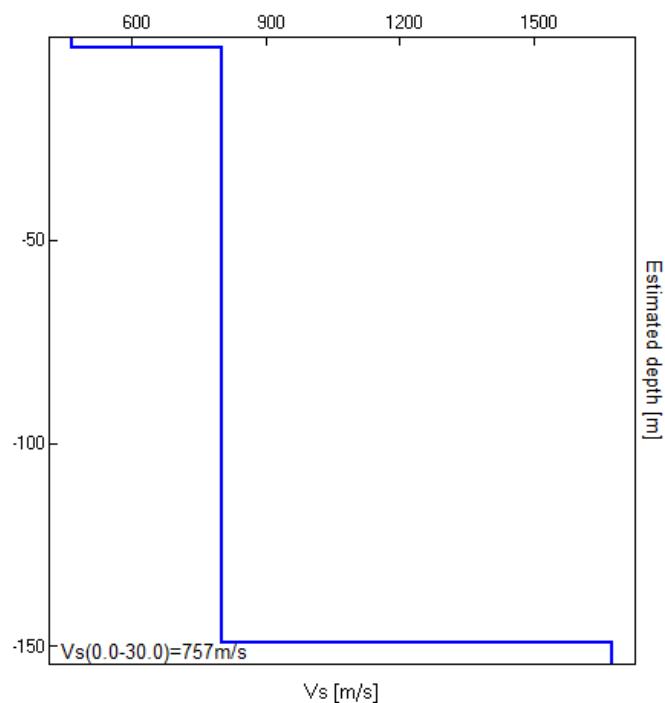
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.5 ± 0.0 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	V_s [m/s]	Poisson ratio
2.36	2.36	465	0.45
149.36	147.00	800	0.35
inf.	inf.	1677	0.35

$$V_s(0.0-30.0) = 757 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.5 ± 0.0 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	1.50 > 0.50	OK	
$n_c(f_0) > 200$	2130.0 > 200	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 73 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	1.25 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	1.688 Hz	OK	
$A_0 > 2$	3.93 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.0 < 0.05$	OK	
$\sigma_f < \varepsilon(f_0)$	$0.0 < 0.15$	OK	
$\sigma_A(f_0) < \theta(f_0)$	$0.201 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T31 (in relazione DIASIS 2012: Stazione HVSR – T29)

***sito acquisizione e posizione in vista satellitare da DIASIS 2012**

CASTELLUZZO T31

Instrument: TRZ-0169/01-12

Data format: 16 byte

Full scale [mV]: n.a.

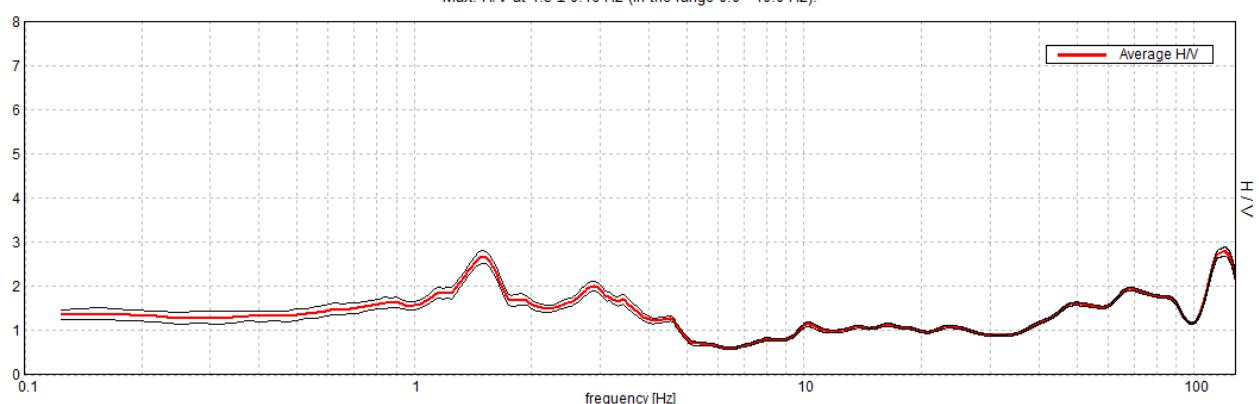
Start recording: 02/08/12 17:45:26 End recording: 02/08/12 18:31:26

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

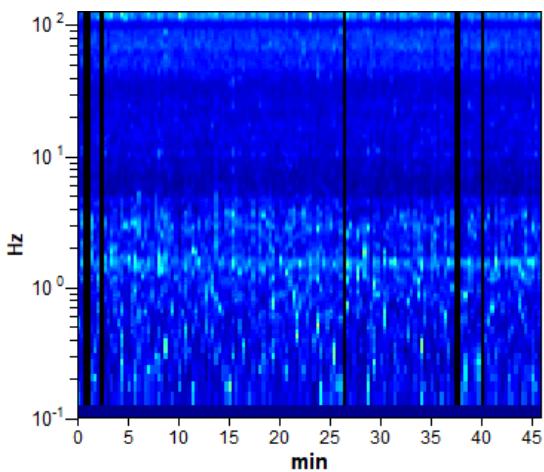
GPS data not available

Trace length: 0h46'00". Analyzed 95% trace (manual window selection)

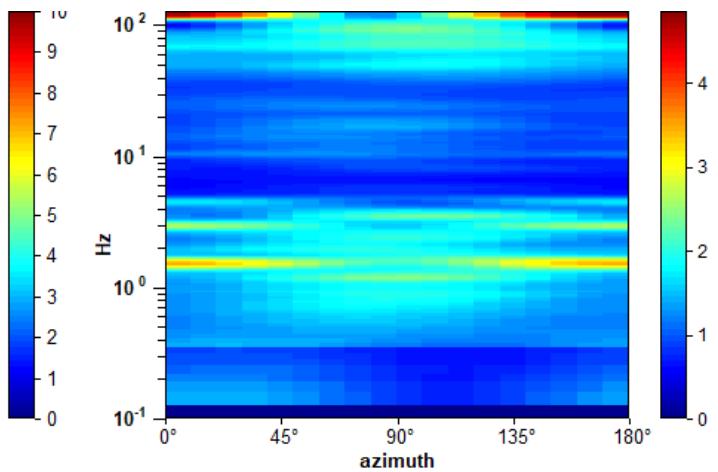
Sampling rate: 256 Hz

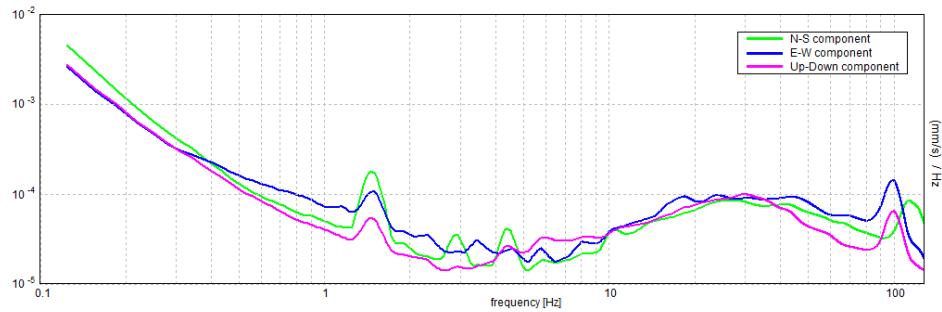

Window size: 20 s

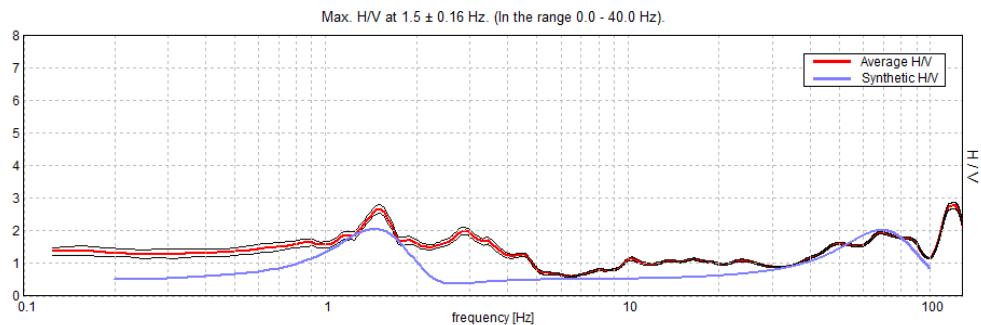
Smoothing type: Triangular window


Smoothing: 10%

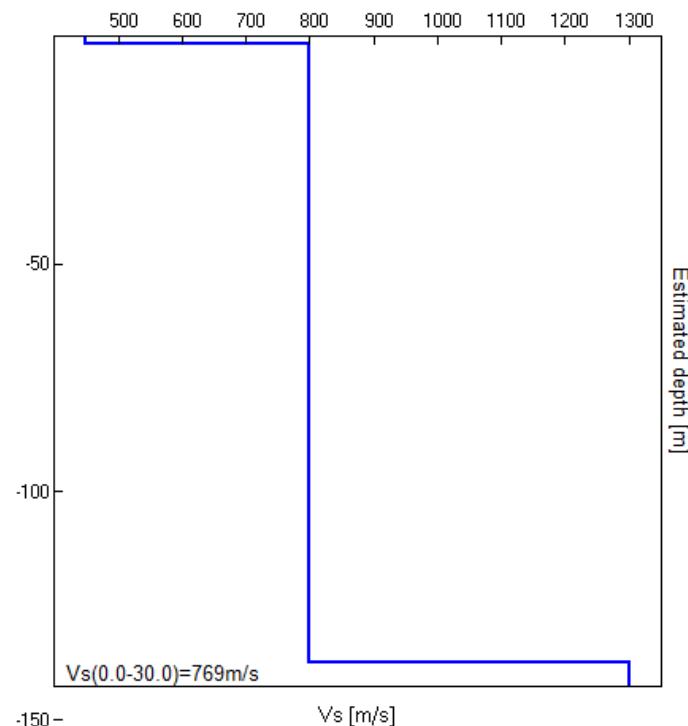
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.5 ± 0.16 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.55	1.55	450	0.45
137.55	136.00	800	0.45
inf.	inf.	1300	0.45

$$Vs(0.0-30.0) = 769 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.5 ± 0.16 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.50 > 0.50$	OK	
$n_c(f_0) > 200$	$3930.0 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5$ Hz $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5$ Hz	Exceeded 0 out of 73 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$	0.469 Hz	OK	
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	3.875 Hz	OK	
$A_0 > 2$	$2.67 > 2$	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 0.10571 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$0.15857 < 0.15$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1363 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$

Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

CASTELLUZZO T32 (in relazione DIASIS 2012: Stazione HVSR – T30)

*sito acquisizione e posizione in vista satellitare da DIASIS 2012

CASTELLUZZO T32

Instrument: TRZ-0165/01-12

Data format: 16 byte

Full scale [mV]: n.a.

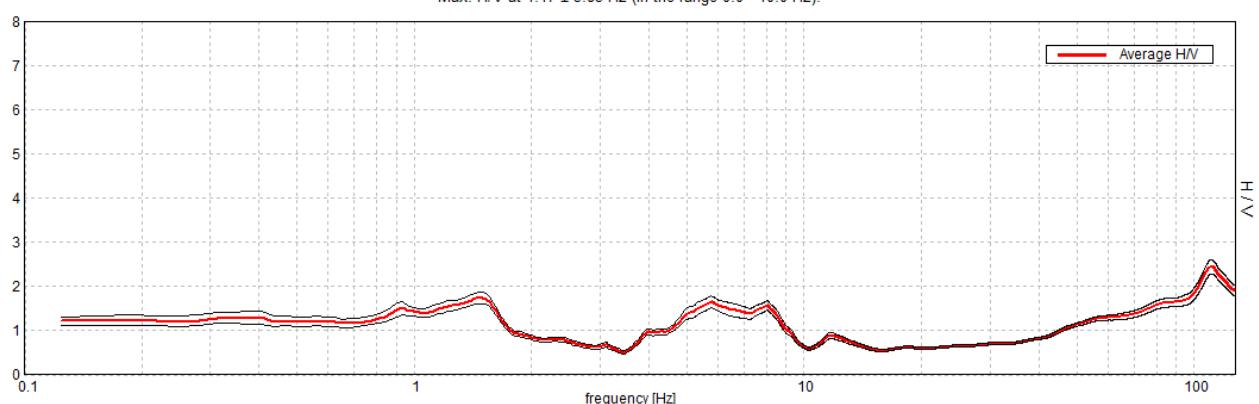
Start recording: 02/08/12 16:29:23 End recording: 02/08/12 17:15:23

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

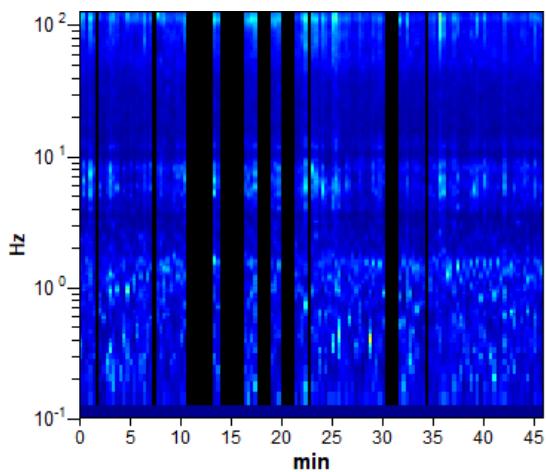
GPS data not available

Trace length: 0h46'00". Analyzed 78% trace (manual window selection)

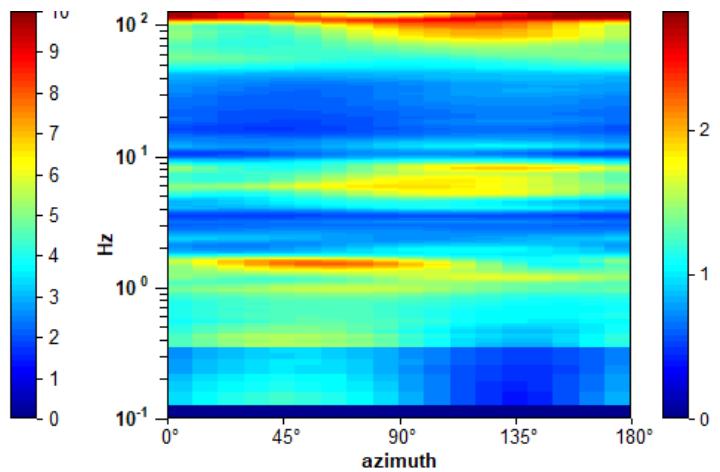
Sampling rate: 256 Hz

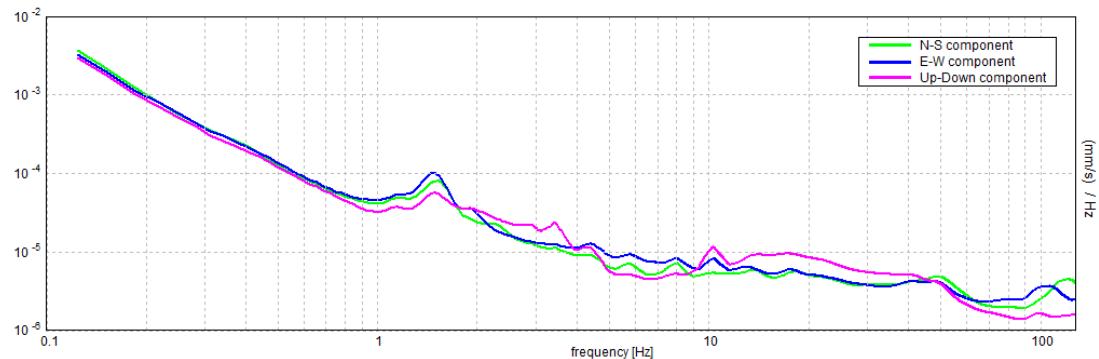

Window size: 20 s

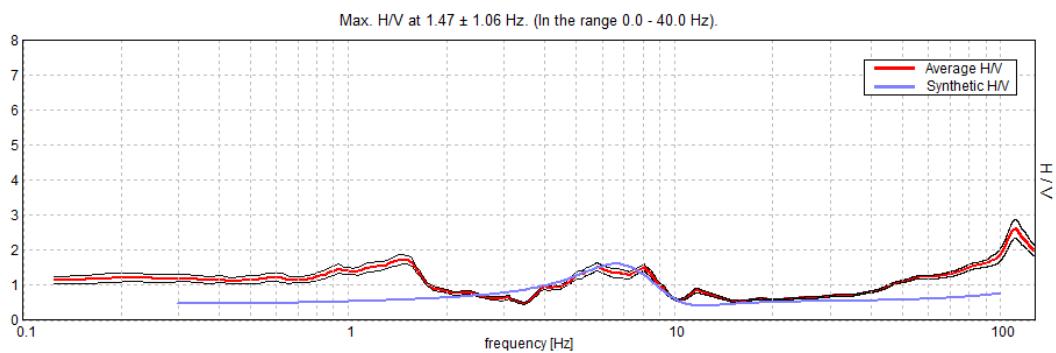
Smoothing type: Triangular window


Smoothing: 10%

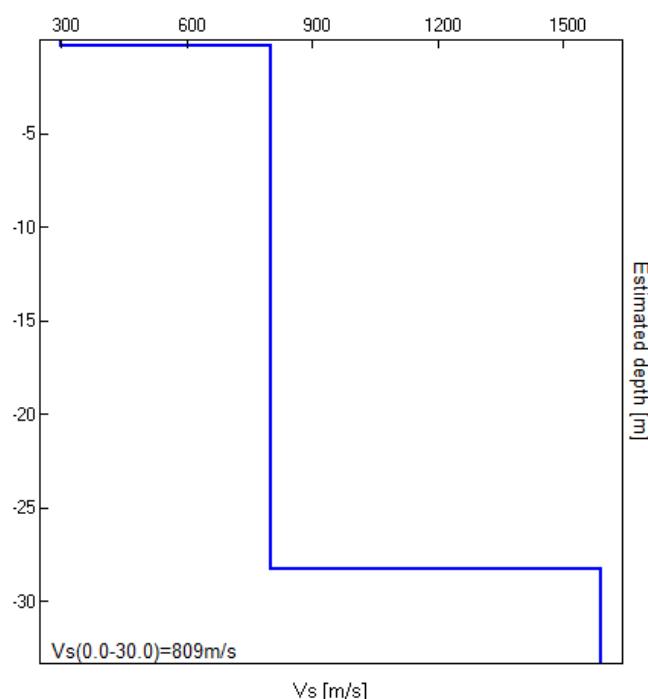
HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 1.47 ± 3.85 Hz (in the range 0.0 - 40.0 Hz).


H/V TIME HISTORY


DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA



EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.30	0.30	300	0.35
28.30	28.00	800	0.35
inf.	inf.	1590	0.35

$$Vs(0.0-30.0)=809 \text{ m/s}$$

[According to the SESAME, 2005 guidelines. Please read carefully the [Grilla](#) manual before interpreting the following tables.]

Max. H/V at 1.47 ± 3.85 Hz (in the range 0.0 - 40.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	$1.47 > 0.50$	OK	
$n_c(f_0) > 200$	$3143.1 > 200$	OK	
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5\text{Hz}$ $\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5\text{Hz}$	Exceeded 0 out of 72 times	OK	

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f^- in $[f_0/4, f_0]$ $A_{H/V}(f^-) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0 / 2$	1.969 Hz	OK	
$A_0 > 2$	$1.74 > 2$		NO
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	$ 2.61885 < 0.05$		NO
$\sigma_f < \varepsilon(f_0)$	$3.84644 < 0.14688$		NO
$\sigma_A(f_0) < \theta(f_0)$	$0.1285 < 1.78$	OK	

L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f_0
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f^-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f^+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of $\log A_{H/V}(f)$ curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	$0.25 f_0$	$0.2 f_0$	$0.15 f_0$	$0.10 f_0$	$0.05 f_0$
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

